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Preface 

We are rarely asked to. make decisions based on only one criterion; most 
often, decisions are based on several usually confticting, criteria. In nature, 
if the design of a system evolves to some final, optimal state, then it must 
include a balance for the interaction of the system with its surroundings
certainly a design based on a variety of criteria. Furthermore, the diversity 
of nature's designs suggests an infinity of such optimal states. In another 
sense, decisions simultaneously optimize a finite number of criteria, while 
there is usually an infinity of optimal solutions. Multicriteria optimization 
provides the mathematical framework to accommodate these demands. 

Multicriteria optimization has its roots in mathematical economics, in 
particular, in consumer economics as considered by Edgeworth and Pareto. 
The critical question in an exchange economy concerns the "equilibrium 
point" at which each of N consumers has achieved the best possible deal 
for hirnself or herself. Ultimately, this is a collective decision in which any 
further gain by one consumer can occur only at the expense of at least one 
other consumer. Such an equilibrium concept was first introduced by 
Edgeworth in 1881 in his book on mathematical psychics. Today, such an 
optimum is variously called "Pareto optimum" (after the Italian-French 
welfare economist who continued and expanded Edgeworth's work), 
"effi.cient," "nondominated," and so on. If due credit is,to be given, such 
decisions should be called "Edgeworth-Pareto optimal," since it was 
Edgeworth who based his approach on the assumed existence of utility 
functions (criteria). Indeed, Pareta emphasizes that his approach is based 
on the use of indifference curves (Ievel sets). This optimality concept is 
presently the most widely accepted in multicriteria optimization, and, with 
some minor digressions, the chapters in this volume use Edgeworth-Pareto 
optimality as the underlying optimality concept. 

My own studies initially focused on the theory and application of 
differential games. It soon became apparent that the theory of cooperative 
games, or multicriteria optimization, showed more promise of immediate 
application. The first application of the theory in mechanics concerned a 

vii 
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bicriterion problern (a measuring device wastobe inserted into an optimally 
controlled system in such a way as to minimize the disturbance to the 
system). This was followed by the development of the concept of natural 
structural shapes. I also became interested in the history of multicriteria 
optimization, which stimulated an intensive study of mathematical 
economics and the writing of several survey papers on the subject, beginning 
with a historical survey covering the period 1776-1960, followed by surveys 
of applications in engineering and the sciences and in mechanics. The last 
survey was on the use of multicritieria optimization in abstract spaces, 
written in cooperation with Professor J. Dauer. 

These surveys were based on selections from about 3000 references on 
multicriteria optimization and related topics. As in all such surveys, the 
selection was affected by philosophical preferences. Primarily, papers based 
on physical rather than economic criteria were considered, and application 
had to be their primary usefulness. The emphasis on physical criteria is 
based on my conviction that it is important first to discover the best physically 
possible design implied by the fundamental postulates and axioms of a 
particular theory. One can subsequently make a clear assessment of the 
limitations imposed by economics and technology. A design whose optimal
ity depends on, say, the whims of the stock market or on archaic technology 
can hardly be considered "optimal." Instead, the physically optimal design 
can provide the impetus for or guide to the development of the appropriate, 
economically feasible technology. 

Among the numerous articles on multicriteria optimization, some, of 
course, were more innovative and stimulating to me than others. These were 
written by the authors whose work is included in this volume, which I hope 
to present to a wider audience. All of the chapters ( except Chapter 7) were 
written specifically for this volume. Tagether they cover a wide area of 
applications. The broadest area of application-and one of the first-is 
resource planning and management (presented in Chapter 5). The applica
tion in welfare theory ( Chapter 4) presents multicriteria optimization in its 
traditional setting. The sciences are also represented by applications in 
mathematical biology (Chapters 6 and 7). The remaining applications are 
in engineering: aircraft control (Chapter 8), highly focused systems (Chapter 
10), and structural optimization (as represented in Chapters 9 and 11). 

The overall intent of this book is to serve as both monograph and 
textbook for study in all areas where optimal decision making is of primary 
importance. It can be used, for example, as a text in mathematics, engineer
ing, and the social sciences. Thus, the fundamentals of multicriteria optimiz
ation theory are outlined in Chapter 1, and numerical methods for the linear 
case are presented in Chapter 2. All chapters include discussions of the 
models as they pertain to the corresponding disciplines. As an added 
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incentive to the reader, the proofs of the theorems in Chapter 1 can be 
completed independently as exercises. Virtually all are Straightforward 
contradiction proofs, which, if desired, may be found in the references cited. 

Although this text concerns applications of multicriteria optimization, 
I know of only three implementations of such designs in practice: in water 
resources planning, where the use of multicritieria optimization was man
dated by government statute (accounting for the past proliferation of articles 
in this area); in the design of !arge radio telescopes and highly focused 
systems, as discussed in Chapter 1 0; and in the context of the Paretian 
economic model used in World Bank forecasting. In a sense, Chapter 11 
also deals with implementation insofar as natural structural shapes provide 
a match with structures in nature. This dearth of actual application is no 
different in single-criterion optimization, since industry and university alike 
consider optimization an esoteric discipline to be relegated to research and 
graduate study rather than used as an everyday design tool. 

Overall, an attempt has been made to make the reader aware of the 
wide variety of possible applications and the ease with which one may 
consider several criteria simultaneously in the optimization process. In 
essence, one is just a scalarization away. 

As in all such endeavors, I am indebted to those who participated in 
this volume. 

Wolfram Stadler 
San Francisco 
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1 

Fundamentals of Multicriteria Optimization 

WOLFRAM STADLER 1 

1.1. lntroduction 

In any decision or design process, one attempts to make the best 
decision within a specified set of possible ones. The notion of "best" is in 
the eye of the beholder. 

In the sciences, "best" has traditionally referred to the decision that 
minimized or maximized a single criterion; in economics, "best" referred 
to the simultaneous optimization of several criteria. It would seem that the 
latter approach is more realistic and that only the constraints of habit and 
capability prevented multicriteria optimization from being the approach 
generally accepted in science. 

Throughout, the emphasis has been on the optimal decision rather than 
on the minimum of some criterion function; that is, to some extent, the 
criterion function has served as an artifice for arriving at optimal decisions. 
An analysis of the decision process indicates that there are two funda
mentally different approaches to decision making: one can order the decision 
set itself, or one can induce an ordering by bringing the decision space into 
correspondence with some ordered space. 

In terms ofthe evolution ofthe subject, the latter approachwas probably 
the more natural one, since it extended single criterion optimization to that 
of several criteria. In economics, the criteria are generally the utilities of 
individual consumers, and it was Edgeworth (Ref. 1) in 1881 who first 
successfully defined an optimum for such a multiutility problern in the 
context of two consumers, P and 1r: 

lt is required to find a point (x, y) such that in whatever direction we take an 
infinitely small step, P and 11' do not increase tagether but that, while one 
increases, the other decreases. 

1 Division of Engineering, San Francisco State University, San Francisco, California 94132. 
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Some years later, in 1906, Pareto (Ref. 2) took the more direct approach 
of ordering the decision set directly and subsequently defining an optimum 
for n consumers in the following manner: 

We will say that the members of a collectivity enjoy maximum ophelimity in a 
certain position when it is impossible to find a way of moving from that position 
very slightly in such a manner that the ophelimity enjoyed by each of the 
individuals of the collectivity increases or decreases. That is to say, any small 
displacement in parting from that position necessarily has the effect of increasing 
the ophelimity that certain individuals enjoy, of being agreeable to some and 
disagreeable to others. 

This statement has been the basis for terming optimal decisions defined in 
this manner as Pareto optimal. Clearly, Edgeworth's statement is more 
related to what is now termed a multicriteria problem. With this in mind, 
as weil as historical precedent, such optima should more appropriately be 
termed Edgeworth-Pareto optima. 

In a sense, the multicriteria problern was forced on the economist in 
having to deal with the aspirations of several consumers. The subject, 
however, also has aseparate early mathematical history in the consideration 
of ordered sets by Cantor (Ref. 3) and Hausdorff (Ref. 4). Their work on 
set theory inspired the extension ofthe natural properties ofthe real number 
system, such as total orderedness, to more abstract sets. 

The mathematical and economic approaches were eventually united 
with the inception of game theory by Bore! (Ref. 5) in 1921. The optimal 
choice for two antagonists there was expressed in terms of the min-max 
theorem, proven by Bore! for n = 3 and n = 5, and by von Neumann (Ref. 
6) for general n, in 1927. 

All ofthese beginnings still provide rich areas ofresearch, the extension 
of equilibrium theory to a continuum of traders, the treatment of optimality 
in ordered topological vector spaces, and the evolution of game theory to 
the inclusion of differential games. 

With the exception of Koopmans' introduction of the efficient point 
set into production theory, this wealth of mostly theoretical results has only 
slowly found its way into applications. Multicriteria optimization has had 
its widest application in water resources management, in business, and in 

. structural design within mechanics. The history of the subject has been 
traced in Refs. 7 and 8; its application in the sciences and in engineering, 
in Refs. 9 and 10. The present volume can only hint at the wide range of 
possible applications, and it is hoped that the successful applications presen
ted here will provide the impetus for an ever wider use of multicriteria 
optimization in the sciences and in engineering. 
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1.2. Preferences and Orderings 

As part of its accreditation of a mechanical engineering curriculum, 
the Accreditation Board for Engineering and Technology (ABET) requires 
that the curriculum contain a specified number of units in Engineering 
Science and Engineering Design. The definition of design as devised by 
ABET reads, in part: 

Engineering design is the process of devising a system component or process to 
meet desired needs. It is a decision making process (often iterative), in which 
the basic sciences, mathematics and engineering sciences are applied to convert 
resources optimally to meet stated objectives. Among the fundamental elements 
of the design process are the establishment of objectives and criteria, synthesis, 
analysis, construction, testing, and evaluation. 

This statement reads like part of an optimization course description. 
However, a recent survey of major universities in this country indicates that 
not a single one of them offers an optimization course as part of its 
undergraduate curriculum in mechanical or electrical engineering. Worse 
yet, most engineers and educators would consider optimization to consist 
mainly of analysis and engineering science, and the design process to be 
an undefinable interaction of inspiration and art. 

This contradiction in aim and practice is partially due to such broad 
statements as "optimal designs are too sensitive to imperfections," "optimal 
designs generally are too costly to manufacture," as weil as "optimal design 
has little application in the real world." In fact, when properly applied, 
optimization has led to unexpected and sometimes greatly improved designs 
in industry. 

Optimization primarily is an organized and constructive approach to 
good decision making. In practice, one is often interested simply in improv
ing an existing design, and necessary conditions for an optimum can then 
provide a guide to those design changes that willlead to improvement. The 
theoretical optimum serves as goal and Iimitation of the design process. It 
is this broader view that is needed to allow optimization to become a 
standard tool for practicing engineers. 

Multicriteria optimization is particularly weil suited to such an 
approach, since it generally yields an infinite family of optimal designs 
from among which the designer may then select a final optimum. 

In most applications, it is the optimal design that is of interest and not 
the ultimate value of some criterion function used in deriving the design. 
It would thus seem that Pareto's approach of ordering the decision set 
directly is the most natural approach. In practice, most results are based 
on the use of criterion functions. From a didactic point of view, however, 
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it is useful to Iook at orderings of sets in order to make the reader aware 
of what the use of criteria is meant to accomplish. 

In mathematics, the word "order" has come to suggest at least a "partial 
order." Economists use the somewhat weaker concept of a "preference," 
although this name also has become suggestive of at least a "partial preor
der." In view of the extensive discussion of these special relations in the 
literature, it is easy to lose sight of the fact that all of them are simply 
binary relations that have been put to a particular use: namely, to provide 
a hierarchy among the elements of a set. The word "preference" will be 
used in the latter sense here. To make the meaning somewhat more precise, 
the following Iitera! definitions are included. They are Iitera!, in that only 
the purpose of a dass of binary relations is stated, rather than any particular 
mathematical properties that these relations might possess. 

Definition 1.1. Strict preference and indifference. Let 'W be an 
arbitrary set. 

i. Strict preference. Let 97l 1 be a binary relation on 'W. 91l 1 is a strict 
preference on "triff 97l 1 serves to introduce a hierarchy among the elements 
of 'W. 91l 1 is then denoted by <. 

ii. lndifference. Let 97l 2 be a binary relation on 'W. 97l 2 is an indifference 
on 'W iff 97l 2 serves to introduce a notion of equality among the elements 
of 'W. 91l 2 is then denoted by -. 

Definition 1.2. Preference. Let 'W be an arbitrary set and Iet 91l be a 
binary relation on 'W. 91l is a preference on 'W iff 91l = 91l 1 u 97l 2 is the 
disjoint union of a strict preference 97l 1 and an indifference 97l 2 • 91l is then 
denoted by ::S. 

Conversely, given a preference ::S on a set 'W along with the fact that 
it is the disjoint union of two relations < and -, one may obtain these as 
derived relations from ::S with x, y E 'W as ( a) x < y iff x ::S y and 1x - y; 
(b) x- y iff x ::S y and 1x < y. (Recall that the symbol1 stands for "not.") 
Furthermore, in this context, the symbol - is its own dual, and for x, y E 'W, 
the symbol > is defined by x > y iff y < x. 

Clearly, the concept of a binary relation is fundamental to the consider
ation of preferences on a set. Although fundamental, it is generally a 
neglected topic. It is thus of interest to pause here and to present some of 
these fundamentals to the reader. In due course they will Iead back to the 
topic at hand. 

Definition 1.3. Binary relation. A binary relation is a set of ordered 
pairs. 
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Thus, a binary relation is a subset of an appropriate universal set; in 

faet, it is a rule for the extraetion of a eolleetion of pairs from some given 

set of pairs. Conversely, every subset of the universal set may be eonsidered 

tobe a relation. Fora given relation '!ll, the pairs that belong to '!ll or satisfy 

'!ll are denoted indifferently by (x, y) E '!ll or x'!lly, depending on whether 

one wishes to emphasize the relation as a set or the classifier that deseribes 

it. 

Definition 1.4. Binary relation on a set. Let W be a fixed set and Jet 

'!ll be a relation. Then '!ll is a binary relation on W iff '!ll <:; W x W. 

In this eonneetion, it follows that a binary relation '!ll on W is uniquely 

determined by its graph; eonversely, every subset '!ll of W x W determines 

a binary relation on W. These statements, together with the faet that '!ll is 

a set of ordered pairs, imply that exaetly one ofthe following four statements 

holds with respeet to any given binary relation '!ll on W: For x, y E W 

1. (x'!lly,y'!llx). 
2. (x'!lly, 1y'!llx). 
3. (-u'!lly, y'!llx). 
4. (1x'!lly, 1y'!llx). 

Some properties that find frequent use in the eharaeterization of prefer

enees are listed next. 

Definition 1.5. Properfies of relations. Let '!ll be a relation on a fixed 

set W. Then '!ll is 

Pl. Reflexive iff (x'!/lx) for every x E W. 
P2. Irreflexive iff ( 1x'!llx) for every x E W. 
P3. Symmetrie iff (x'!lly) ~ (y'!llx) for every x, y E W. 
P4. Asymmetrie iff (x'!lly)·~ (1y'!llx) for every x, y E W. 
PS. Antisymmetrie iff (x'!lly, y'!llx) ~ (x = y) for every x, y E W. 
P6. Transitive iff (x'!lly, y'!llz) ~ (x'!llz) for every x, y, z E W. 
P7. Negatively transitive iff (1x'!lly, 1y'!llz) ~ (1x'!llz) for every x, y, 

ZE W. 
P8. Conneeted or eomplete iff (x'!lly) or (y'!llx) or both for every 

x,y E W. 
P9. Weakly eonneeted iff (x ."t- y) ~ (x'!lly) or (y'!llx) for every x, y E 

w. 
Whenever possible, these properties may most easily be visualized for 

relations that are subsets of IR 2 • 
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A z X Fig. 1.1. ~ on A = [l, 2]. 

Example 1.1. Consider the relation ~ on the reals and its restriction 
~A to the interval A = [1, 2], a closed interval in IR. The subset of A x A 
corresponding to ~ is shown in Fig. 1.1. From this graph of the relation, 
it is a simple matter now to check whether an ordered pair in ~A satisfies 
a property ( P,) or not. 

The relation is transitive, for example, since 

(x,y)E~A and (y,z)E~A~(x,z)E~A 

X ~AY y ~A z X ~Az 

The relation is reflexive because the diagonal of A x A belongs to ~A· It 
is asymmetric because all the ordered pairs in ~A are on one side of the 
diagonal. As a matter of fact, the only properties that ~A does not have 
are irreflexivity and symmetry. Note, finally, that ~A simply consists of all 
the pairs (x, y) E A x A for which x ~ y holds, so that the shaded area in 
the sketch is the graph ~A = {(x, y) E A x A: x ~ y}. 

Various combinations of these properties may now be used to define 
specific preference relations. Some of those frequently used are included 
in the following definition. 

Definition 1.6. Ordering relations. Let PA be a relation defined on a 
fixed set W. Then 

1. PA is a partial preorder iff it is reflexive and transitive. 
ii. PA is a partial order iff it is reflexive, transitive, and antisymmetric. 

m. PA is a complete preorder iff it is reflexive, transitive, and complete. 
iv. PA is a linear order ( or simply order) iff it is reflexive, transitive, 

antisymmetric, and complete. 
v. PA is an equivalence iff it is reflexive, transitive, and symmetric. 

Remark 1.1. Commonly, the relations i-iv are used as strict preferen
ces; and the equivalence relation is used to denote indifference. A set W 
together with its preference are denoted by the pair ( W, :::5 ). 
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X 

.z 

Fig. 1.2. The natural order on IR2• 0 

The lexicographic order ( or order by first differences, as Hausdorff 
termed it) is a complete order; that is, when the lexicographic order has 
been imposed upon a set, then all of the elements of the set will be 
comparable to one another under the ordering. In most applications, partial 
orders and preorders are generated by cones. When a convex cone is a 
proper or pointed cone, it generates a partial order. When wedges are 
admitted, only a partial preorder is generated because the cone then contains 
a subspace, destroying the antisymmetry property. The most commonly 
used partial order within the present context is the natural order on IR", 
illustrated in Fig. 1.2. With each point x in IR 2, we associate a cone K, and 
for every y E K, we say x ~ y. Note that the point z is not comparable to x 
under such an arrangement-hence the name "partial order." More 
specifically, the following notation is used to denote the natural order on 
IR": For x, y E IR", 

(x ~ y)x ~ y iff x, ~ yj, Vi EI= {1, ... , n} 

(x ~ y)x < y iff x ~ y and x ~ y 

(x = y)x = y iff xi = y., Vi E I 

(x < y)x « y iff x, < yj, Vi E I 

The notation in parentheses is in more common usage in the literature, 
whereas the other notation is frequently used in the economic literature. lt 
is unfortunate that the latter notation has not yet found wide acceptance, 
since it is less prone to misprints and misreadings. Throughout this chapter, 
the notation in parentheses will be used. 

The following statements serve to give a more precise characterization 
of cones and their relation to preferences on a space. 

Definition 1.7. Wedge. Let 'W be a vector space, and Iet K ~ 'W. 
Then K is a wedge in 'W iff x E K, A ~ 0 imply Ax E K. 
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Definition 1.8. Cone. Let K be a wedge in a vector space W. Then 
K is a cone in W iff K n - K = {0}. 

Lemma 1.1. Let W be a vector space and Iet K be a convex wedge 
( cone) on W. Let :'0 be a preference on W defined by 

X :'0 y iff y - X E K 

Then :'0 is a partial preorder (partial order) on W. 

Lemma 1.2. Let W be a vector space and Iet :'0 be a partial preorder 
(partial order) on W satisfying 

(i) x :'0 y => x + z :'0 y + z for every x, y, z E W. 
(ii) x :'0 y => Ax :'0 Ay, for every x, y E W, and A > 0. 

Let K <; W be associated with :'0 by 

X :'0 y iff y - X E K 

Then K is a convex wedge ( cone). 

The mathematician may now pursue the topic of ordered vector spaces 
on its own merit; within the present context, they play a roJe only insofar 
as they Iead to optimization results. Generally, once a preference has been 
introduced on some set, optimal elements with respect to such a preference 
may then be defined, if the preference is sufficiently structured for such a 
definition to make sense. 

Definition 1.9. Minimum element. Let W be an arbitrary set, :'0 a 
preference on W, and Iet x0 E W. Then x0 is a minimum element for W iff 
x0 :'0 x for every x E W. 

Definition 1.10. Minimal element. Let W be an arbitrary set, ::; a 
preference on W, and Iet x 1 E W. Then x1 is a minimal element for W iff 
x :'0 X~o x- x 1 for every x 1-comparable element in W. 

Note that minimal elements are generally used in connection with 
partial orders and partial preorders, whereas minimum elements are used 
with respect to complete preorders and orders. As a rule, there exists an 
infinity of minimal elements with respect to partial orders and preorders. 
Uniqueness is obtained when asymmetry is included as one ofthe properties 
of the underlying preference. 

Ideally, it would be desirable tobe able to generate the optimal elements 
of a preferenced set ( W, :'0) directly from the knowledge of the preference 
alone. From a practical point of view, however, there are few useful condi
tions available that are suited to such an approach. Instead, conditions 
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leading to the determination of optimal elements are usually deduced from 
the existence of a utility function, an order-preserving automorphism from 
the preferenced set (W, ::5) into the ordered reals (IR,~). 

Definition 1.11. Utility function. Let ::5 be a preference on a set W. 
A real-valued function lP( ·): W-+ IRis a utility function for ::5 on W iff for 
every x, y E W 

i. X ::5 y ~ lP(X) ~ lP(y). 
ii. X< y ~ lP(X) < lP(y). 

iii. X- y ~ lP(X) = lP(y). 

Note that if F( ·):IR-+ IR is a strictly increasing function, then 1/1( ·) = 

F o lP( ·) is another utility function for ::5 on W, so that there is nothing 
unique about such a function. Furthermore, although intuition might indi
cate that one can always construct such a function, this is not the case. 
Such a function need not exist at all, even when ::5 is a complete ordering. 

Example 1.2. Let ::5 L be the lexicographic order on IR2 with x ::5 L y iff 
Xt ~ Yt or Xt = y 1 and x 2 ~ y2 for every x, y E IR2• Then the assumption of 
the existence of a utility function lP( ·) for ::5 L on IR2 results in the establish
ment of a one-to-one correspondence between a set of cardinality c and a 
countable set-a contradiction. Hence, no utility exists. This example is 
due to Hausdorff (Ref. 4). For the interested reader, an extensive discussion 
of lexicographic orderings and their properties may be found in Fishburn 
(Ref. 11). 

As mentioned earlier, with the exception in economics, there is little 
work in optimization that derives optimal decisions directly from a prefer
ence relation introduced on the decision set; nor are utilities greatly used 
in this connection. The use of such utilities results in an ordinal theory of 
optimization; that is, no absolute measure can be associated with such a 
utility. 

In the sciences, one generally begins with a known utility function, a 
criterion function. lt usually has physical meaning, and it is used as a utility 
over the decision set, using the ordering on the reals to induce a preference 
on the decision set. An optimal decision, then, is one that maximizes or 
minimizes this criterion function. This approach in the presence of several 
criteria is the central topic of the next section. 

1.3. The Problem Statement 

lt is weil to consider a number of standard problern formulations to 
provide a framework for the practical and theoretical results. In line with 
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historical precedent, the formulation of the economic equilibrium problern 
(from the consumer's side only) will be considered first, followed by the 
general formulation of the vector maximum problem. The section closes 
with the formulation of the multicriteria programming problern and the 
multicriteria control problem. 

In the following discussion, it is convenient to use the notations f!lJ and 
g( ·) in two different contexts; the particular meaning will be clear from 
the context. Finally, all ofthe discussion will be presented with minimization 
as the objective of the single decision maker. 

As indicated earlier, there are two conceptually different approaches 
to optimal decision making. One may introduce a preference ::S on a decision 
set '2/J, with d 1 ::S d2 indicating that d 1 "is less than or equivalent to" d2. An 
optimal element, then, might be a minimum element da E '2/J such that da ::S d 
for every d E '2/J, where it is worth noting that such a minimum need not be 
unique; uniqueness derives from conditions satisfied by the relation ::S. 

Conversely, one may begin with a mapping g( ·): '2/J ~ ~. and use the natural 
order ;::;: on the reals to induce a preference on f!JJ, with d1 ::S d2 iff g( d1) ;::;: 

g( d2 ). An optimal decision, then, is a decision d0 E f!lJ suchthat g( d0 ) ;::;: g( d) 
for every d E 0'J. A similar approach is followed in the multicriteria case. 

Multicriteria problems may be posed with a finite number of criteria 
in mind or an infinity of criteria. Only the former case will be considered 
here. In the extreme case, there are n consumers, each with a decision set 
'2/J., i E I = { 1, ... , n}, and with a desideratum expressed in terms of a 
preference ::::'0 1 on f!JJ 1 • The usual approach towards a simultaneaus optimal 
decision is to consider a collective decision set 

f!lJ =X {'2/JI: i EI} 

with preference ::S on '2/J defined by d 1 ::S d2 iff d; ::S; d ~ for every i E /, with 
d1 , d2 E f!lJ and d;, d~ E f!JJ 1 • An optimal element, then, might be the usual 
minimal element da E f!lJ such that d E f!lJ and d ::S d0 imply d - d0 • 

Conversely, one may begin with mappings g;( ·): 'll! 1 ~ ~. and a collec-
tive map 

g(.): '2/J ~ s1 <:; ~n 

Next, a preference :Sa on .stl is used to induce a preference ::Sd on f!lJ with 
a suitable decomposition to obtain preferences ::S 1 on the decision sets 'll!;. 
An optimal element can then be defined with d0 E f!lJ is optimal iff d E f!lJ 
and g(d) ::S g(d0 ) imply g(d)- g(d0 ); that is, iff g(d0 ) isaminimal element 
of s1 with respect to ::S a on .stl. Thus, one now ignores the preferences ::S 1 

[ all the information is contained in the g;( · ) ] and one defines optimal 
decisions in terms of the optimal elements for (d, :Sa). In this context, the 
gl ( ·) may still be considered to be the utilities of the individual consumers. 
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1.3.1. The General Multicriteria Problem. Some ofthe results are most 
easily stated in terms of the following general problem. Consider a single 
decision set '!IJ and define thereon specific criterion functions g;( · ) : '!IJ ~ 
.sll, <:; IR, i = 1, ... , N. Collectively, one then has the criterion map 

g(·):'!/J ~ .siJ <:;\RN 

where .sll =X {.sll;: i = 1, ... , N} is the attainable set and g = (g1 , ••• , gN ). 

In this context, the functions g;( ·) generally have cardinal meaning, in that 
they represent specific physical quantities. 

The problern statement: Obtain optimal decisions d E '!IJ for g( d) 
subject to d E '!/J. 

1.3.2. The Multicriteria Programming Problem. Let O(open) <:;IR" 
and introduce the inequality constraints 

J( •) :!1 ~ \Rm 

and the equality constraints 

and define the decision set (feasible set) 

X= {x E IR": x E !1,/(x) :S 0, h(x) = 0} 

The criterion functions are 

g;( · ) :X ~ IR, 

with corresponding criterion map 

g(.): X~ !RN, 

The subset 

i = 1, ... , N 

Y = g(X) = {y E \RN: y = g(x),x EX} 

is called the attainable set. 

The problern statement: Obtain optimal decision(s) :XE X for g(x) 
subject to x E X. 

1.3.3. The Multicriteria Control Problem. Let the state x E A c IR" be 
controlled by means of a control u ( ·): [ t0 , t1] ~ U c IR' in the state equations 

x=f(x,u) (1.1) 
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with x(t0) E (} 0 ~ the initial set and x(t1) E (} 1 ~ the terminal set and with 
xn = t, the independent variable, so that r(x, u) = 1. Furthermore, 

f( ·): A X U ~ B(open) c !Rn 

is the velocity function and U is the control constraint set, the set of all 
possible values of u( · ). lt is usual to assume that u( ·) belongs to a nonempty 
set :Ji of admissible controls. A criterion map g( · ) : :Ji ~ IR N is defined in 
terms of the component integrals 

f t, 

g,(u( ·)) = foi(x(t), u(t)) d1 
tn 

where 

/ 0 ,( ·): A x U ~ C,(open) c IR, i = 1, ... , N 

The state space !Rn is augmented with 

y = fo(X, u), y(t0 ) = 0 ( 1.2) 

where y E !RN, the criterion space, and where fo = (/01 , ... JoN ). Let u( ·) E 

:Ji, Iet x( ·) be a corresponding solution of the state equation ( 1.1 ), and Iet 
s( ·) be a solution of Eq. (1.2) corresponding to the pair (x( · ), u( · )); then 
the attainable criteria set is defined by 

y = {y E [RN; y = s(t1)} 

The problern Statement: Obtain optimal control(s) u(.) E :Ji for 
g(u( · )) subject to u( ·) E %. 

These are the basic multicriteria problern statements. They may still be 
modified for various specialized problern categories such as the linear 
multicriteria programming problern or the multicriteria control problern 
with terminal cost, where one has functions 4>,(x(t1)) in addition to ( or 
instead of) the previous integrals. 

1.4. The Optimality Concept 

Note that although each of the previous problern statements indicated 
that an optimal solution was to be found, the meaning of optimality had 
been left open. Throughout the earlier discussion, the term "optimal" had 
referred to either a minimum or a minimal element with respect to a 
particular preference:::;. This will be the primary meaning of optimality here. 
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Definition 1.12. Edgeworth-Pareto Optimality. 

i. The general problem. A decision a E gj) is Edgeworth-Pareto 
optimal iff d E qlJ and g(d) ~ g(d) ~ g(d) = g(d) for every d-comparable 
d E gj), 

ii. The programming problem. Adecision .X E X is Edgeworth-Pareto 
optimal iff XE X and g(x) ~ g(x) ~ g(x) = g(x) for every X-comparable 
XE X 

iii. The control problem. A control u(.) E :g; is Edgeworth-Pareto 
optimal iff u( ·) E :JP and g(u( · )) ~ g(u( ·)) ~ g(u( ·)) = g(u( · )), for every 
u-·comparable U ( ·) E :Ji. 

(For convenience, the abbreviation EP will be used for Edgeworth-Pareto.) 
This definition formalizes the statements by Pareto and Edgeworth 

which were given in the introduction. It appears to be the natural extension 
of the minimization of a single criterion to the consideration of N criteria, 
in the sense that any further improvement in any one of the criteria values 
requires a worsening of at least one other criterion value. Thus, at an EP 
optimal point, one has reached a stage in the decision process where a 
definite trade-off between desiderata is required. 

Many equivalent terms are in use. For a given attainable set, Y E !RN, 

the efficient point set, the set of noninferior points, the set of Pareto optimal 
points, and the set of minimal points with respect to ~ on Y are all the 
same. Points that are not minimal may often be eliminated by making use 
of the following Statements: (1) a point d E gj) is minimal iff there is no 
d E qlJ such that g(d) s g(d); consequently, a point d E gj) cannot be 
minimal if there exists a d E qlJ suchthat g( d) s g( d); and (2) a movement 
from a minimal point in the criterion space must result in the increase of 
at least one criterion value. 

In most problems, there exists an infinity of such solutions, a fact that 
many find distressing, since a decision maker ultimately has to come up 
with a single decision that is to be realized. (This point will be discussed 
in more detail in a later section.) 

Remark 1.2. Recall that one of the characteristics of a partial order 
is that not all elements need to be comparable to one another. This fact 
was emphasized in Definition 1.12, in that optimality was defined with 
respect to comparable elements. On occasion, some authors have used 
minimum elements in connection with partial orders and partial preorders; 
e.g., optimality on Y c !RN is defined with d0 E gj) as optimal iff g(d0) ~ g(d) 
for every d E gj), Since ~ is a partial order, this is a rather stringent 
requirement which does affect the existence of a solution. In particular, 
such a definition requires that the attainable set Y be a subset of the 
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translated ordering cone at g( d0 ). This is a shape restriction that is difficult 
to verify and appears to be rarely met in practice. 

The following Iemma provides an essentiallink between single criterion 
optimization and multicriteria optimization. 

Lemma 1.3. Adecision J E ':!lJ is an EP optimum iff J minimizes each 
of the criteria g,( · ), i = 1, ... , N, subject to 

d E ':!JJ, = {d E ':!JJ: gj(d) ~ g/J),j = 1, ... , N,j 'I'- i} 

Primarily, the Iemma allows an easy generation of necessary conditions, 
the topic of the next section. 

1.5. Necessary Conditions for EP Optimality 

There is an anecdote concerning a doctoral student in mathematics 
who had discovered a class of functions for which he was able to prove a 
number of interesting results. It turned out that the only member of the 
class was the constant function. In a similar manner, one might derive a 
number of necessary conditions for the empty class. Thus, a Iook at existence 
is desirable before embarking on the derivation of necessary conditions. 

Fortunately, the existence of minimal points becomes problematic only 
in an infinite-dimensional setting (see Ref. 12). In IR N one need generally 
only guarantee some kind of Jower boundedness and closedness of the 
attainable set. For example, closedness of the feasible set X and continuity 
ofthe mapping g( ·) assure the closedness of Y; lower bounds on the g,( ·) 

then provide the rest. 
Generally, optimization problems for which existence can be guaran

teed are called well-posed in analogy with the well-posedness of boundary 
value problems. Often, such guarantees of well-posedness require a degree 
of mathematical generality that detracts from the usefulness of the results 
in an applications oriented context. In fact, from a practical point of view, 
it is often irrelevant whether one has obtained the actual optimum or not, 
as Jong as the results obtained are better than what is presently available. 
When necessary conditions are constructive, they may be used as an organ
ized approach to obtaining better solutions as weil as optimal ones. For 
example, necessary conditions might Iead to a local minimum when an 
absolute minimum does not even exist (see Fig. 1.3 ). Still, if it does happen 
that computation Ieads nowhere, it may be desirable to check for the 
nonexistence of a solution (see Ref. 13). Some final facts concerning 
necessary and sufficient conditions should be kept in mind. 
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Fig. 1.3. Minf(t), t E (a, b), does not exist; a 
local min does. 
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Suppose that X c:; Y and Iet f( ·): Y ~IR. Then g = inf {f(x): x EX} 
and h = inf {f( y): y E Y} are related by h :s g; that is, enlarging the 
decision set may decrease the intim um. If there exist x E X and y E Y such 
that f(x) = g and f( 9) = h, then inf is replaced by min. Clearly, any 
condition that is necessary for an infimum of f( ·) on Y is also necessary 
for an intim um of f( ·) on X; a sufficient condition for an intim um of f( ·) 
on X need not be sufficient on Y. 

The situation is similar to multicriteria optimization. In particular, 
minimal or minimum points with respect to preferences on !RN may be 
subsets of the EP optima. It then follows that necessary conditions for EP 
optimality are also necessary for these optima. 

The first Iemma relates to the so-called cone-dominated points, as 
treated extensively by Yu (Ref. 14). One may take the natural order ~ on 
IR N as generated by the nonnegative cone on IR N, IR N + = { x E IR N :X; ~ 0, 
i = 1, ... , N}. Any cone that contains !RN+ then generates a minimal set 
which is a subset of the EP optimal set. 

Lemma 1.4. Let ::SK on !RN be generated by a cone K, with !RN+ c:; K. 
Then the minimal points with respect to ::S K on Y c:; IR N are a subset of 
the corresponding EP points. 

The next Iemma takes advantage of a still more fundamental property 
of the preferences on !RN, namely, monotonicity. 

Definition 1.13. Monotonicity. Let 'W c:; IR" and Iet ::S be a preference 
on 'W. Then, the derived strict preference < on 'W is 

i. Weakly monotone on 'W iff for x, y E 'W one has x < y ==:} x < y. 
ii. Monotone on 'W iff for x, y E 'W one has x ~ y ==:} x < y. 
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Lemma 1.5. Let :5 be a given preference on Y c !RN. Assurne that the 
derived strict preference < is monotone and asymmetric on Y and that the 
derived indifference - is symmetric on Y. Then, the minimal set on Y with 
respect to :5 is a subset of the EP set of Y. 

Example 1.3. The following definition of a lexicographic order on 
X= X7~ 1 X, is due to Fishburn (Ref. 11): 

Within the context of an asymmetric binary relation > on X = X~~ 1 X,, preferen
ces are lexicographic iff there are asymmetric binary relations >, on X, (i = 
I, ... , n) and a permutation u on {I, ... , n} such that, for all x, y EX, x > y iff 
{i: x, ?'- y,} ". </> and x~(•l > ~i•l Y~i•l for the smallest i for which Xu(•) ?'- u(d Yuid. 

Let X= IR", ~ on IR be the usual order on the reals and Iet a(i) = i, 
i = 1, ... , n; that is, take 1 < 2 < · · · < n, as reflecting the order of the 
components_ Then, for x, y E IR", x < L y (x is lexicographically less than y) 
iff A = {i: i E I and (x, < y, or y, < x,)} is nonempty, and x, < Yi for the 
smallest i appearing in A. More specifically, in Fig. 1.4, one has x1 = YI. 
X2 < Y2, X3 > y 3 , with A = { X 2 < y2 , X 3 > y3}. The smallest i appearing in 
A is i = 2, for which x2 < Y2. lt follows that x < L y. 

Clearly, <L on !RN is asymmetric, since < is asymmetric and the 
equivalence - L, given by = is symmetric. Furthermore, :5 L is monotonic, 
since x :S y ( that is, xi < y, for at least one i) implies x < L y. It follows that 
the minimum on Y with respect to :5 L on Y belongs to the EP set. 

Necessary conditions may now be viewed within this greater range of 
applicability. In view of Lemma 1.3, the necessary conditions for Problems 
1.3.2 and 1.3.3 with EP optimality as the optimality concept differ from 
those with a single criterion function 8( ·): qJJ ~ IR only in that 8( ·) is 
replaced by 8( ·) = cg( · ), c E !RN, c ~ 0; that is, the g,( ·) enter the single 
criterion problern as additional inequality constraints. The statements of 
necessary conditions may then be based on any convenient formulation for 
the single criterion case. The following Statements would seem to be most 

3 

1 X(ado) 

1Yiale) Z 

Fig. 1.4. The lexicographic order on IR3 . 
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useful within the present context. The first is a Fritz-John-type condition 

for the programming prob lern, and the second is a statement of an appropri

ate maximum principle. 

Theorem 1.1. Let x E X be an EP optimal decision, Iet h( ·) and g( ·) 

have continuous first partial derivatives at x, and Iet f( · ) be differentiable 

at x. Then there exist vectors c E !RN, (A0, A) E IRI+m, and J.L E !Rk suchthat 

A 0cVg(x~ + AVf(x) + J.LVh(x) = o 
XE X, Aj(x) = 0, (A 0 , A, J.L) ti- 0, (A 0 , A) ~ 0, and c::::: 0 

Generally, A0 ~ 0 must be considered; again, constraint qualifications 

provide assurances subject to which A0 > 0 is the case. 

Definition 1.14. Admissible controls. A control u( ·): [t0 , t 1 ] """'> U is 

admissible iff 
1. U(bounded) c IR'. 

11. u ( · ) is Lebesgue measurable. 
111. u ( · ) generates a solution x( · ) : [ t0 , t 1] """'> A of Eq. ( 1.1) such that 

X(lo) E 0° and x(t1) E 01• 

The set :Ji of admissible controls is assumed to be nonempty. 

Tlreorem 1.2. Let u( ·) be an EP optimal control. Assurne that f( · ), 

aj( · )/ax, along with foi( ·) and iJ/0 ,( • )jax, Vi EI= {1, ... , N}, are con

tinuous on !Rn+r. Then there exists a vector c E IR N' c ::::: 0, such that 

N 

;J't'(A, x, u) = A0 I cif,(x, u) + I A,f,(x, u) 
1=1 i=l 

with A = (A 0 , At. ... , An) and with adjoint equations 

r = 0, 1, ... , n, satisfy the following conditions: There exists a nontrivial 

response 

A( ·): [to, t1]-" C(open) c IRJ+n 

ofthe adjoint equations evaluated at (x( t), u( t)) with A0 ( t) = A0 = const ~ 0 

everywhere on [t0 , t 1] and with 

sup ;Je(Ä(t), x(t), u) = ;Je(Ä(t), x(t), u(t)) = o 
UE U 
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almost everywhere on [t0 , t 1]. Also, if 0° and 01 are manifolds with tangent 
spaces T0 and T1 at x(t0 ) and x(t1), respectively, then 

(ÄI(to), ... , An(t0 )) is orthogonal to T0 

(AI(tJ), ... , An(t1)) is orthogonal to T1 

In theoretical statements, it is convenient to introduce x" = t with 
Xn = fn (x, u) = 1, as a consequence. In the working of problems, this would 
usually be an unnecessary extra step. Furthermore, the reader is reminded 
that when the control problern involves a given interval [t0 , tJ, the central 
statement of the maximum principle as it concerns the Hamiltonian :Je(·) 
has the form 

sup :Je(A(t), x(t), u> = :Je(A(t), x(t), u(t)) = const 
UEU 

with the constant no Ionger necessarily equal to zero. An extensive compen
dium of variants of the maximum principle may be found in Athans and 
Falb (Ref. 15). They carry over without change as long as the criterion 
function is replaced by a linear combination of the criteria foi( · ). 

Remark 1.3. Although the necessary conditions for optimality are the 
same as those for the minimization of the linear combination of criteria 
G( · ), the two problems are not equivalent. That is, a minimizing decision 
for G(d) subject to d E ~ and for some c ~ 0 is not necessarily an EP 
optimal decision. The conditions subject to which such scalarizations of 
the vector minimumproblern may be used are the subject ofthe next section. 

1.6. Scalarization and Sufficient Conditions 

Properly, scalarization refers to the parametrization of the whole EP 
set. Usually, the EP set, then, is the set of optima for a single criterion 
function or for a sequence of single criterion optimization problems. Of 
course, when such a one-to-one correspondence has been established, it 
serves as a necessary and sufficient condition for EP optimality. Lemma 1.3 
is a prime example of such an equivalence. More often than not, however, 
the term "scalarization" is simply used in connection with scalar valued 
functions of the criteria whose minima happen to be members of the EP set. 

As an example of the former, consider the following e-constraint 
algorithm due to Professor J. Dauer. When properly applied, it generates 
the entire EP set. Computational experience indicates that it works weil for 
up to five criteria. 
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Computational Algorithm. The algorithm is described for three 
criteria; it has its roots in Lemma 1.3. 

Step 1. For i = 1, 2, 3, let rn, = min {gi(d): d E ~} and set 71 1 = 
min {g2(d): d E ~. g1(d) = rn 1} and 713 = min {g2(d): d E ~. g3(d) = rn3}. lf 
71 1 ~ TJ3, then the following inner loop is on the constraint, g1(d) ~ e; if 
TJ 1 < TJ3, then the roles of g1(d) and gid) in the subsequent steps are 
interchanged. 

Step 2. The outer loop parametrizes the constraint g2(d) ~ 8, subject 
to rn2 ~ 8 ~ TJ 1 • Select the number of steps M and the desired parameter 
values 81 = rn2 < 82 < · · · < 81 < · · · < 8M = TJ 1 • Set j = 1. 

Step 3. For eachj, the inner loop parametrizes the constraint, g1(d) ~ 
e. Select the number ~ and the desired parameter values e1 < e2 < · · · < 
ei < · · · < eM,· (See the remark at the end of this section for the selection 
of e1 and eM .) Set i = 1. 

Step 4. 'Solve min {g3(d): d E ~. g1(d) ~ e., gz(d) ~ 81 }. 

Step 5. If i < ~. set i = i + 1 and go to Step 4. If i = Mj, setj = j + 1. 
If j < M, go to Step 3. If i = ~ and j = M, stop. 

Remark 1.4. The following procedure may be used for the selection 
of e1 and eM,· For the initial value, take e1 = min {g1(d): d E ~. gz(d) < 8j}. 
For the final value, let aj = min {g3(d): d E ~. gz(d) ~ 8j} and take eM, = 
min {(g1(d): d E ~. gz(d) ~ 81 , g3(d) = aj}. Theseassure that the algorithm 
will generate only the full range of EP optimal solutions. 

For choices e < e1 , the process described in Step 4 will have no feasible 
solution; for e > eM,• the algorithm may generate duplicate solutions or 
solutions that are not EP optimal. 

The remaining discussion centers on the provision of scalar functions 
whose optima are members of the EP set. Historically, such methods have 
their roots in the establishment of a welfare function over the utilities of 
consumers. Suppose that the gi( ·): ~. --+IR, i = 1, ... , N are the utilities of 
a finite set of consumers with resulting utility map g( ·): ~--+ Y c !RN, 
~ = X;': 1 ~,. A preference :::5 on Y, together with a suitable optimality 
concept, may then be used to define an optimum for the consumer society. 
Welfare theory carries this approach onestepfurther by introducing a utility 
W( · ) : Y ~ IR, termed a welfare function. An optimal consumption J. E ~ 
for the society, then, is one for which 

Wog(d) = max{Wog(d): d E ~} 

For the multicriteria case, a scalar-valued function G o g( ·): ~ ~ IR 
plays this role, and one generally restricts the choice of G( ·) to those for 
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which min { G( y): y E Y} yields a y belonging to the EP set on Y. The 
following Iemma provides a dass of such possible choices. 

Lemma 1.6. Let G( ·): Y--? IR be differentiable with V' G( y) > 0. Let 
d E ~ and g(d) = y E Y and assume G(ß) = min { G(y): y E Y}. Then d 
is EP optimal. 

Nearly all of the specific "welfare" functions used for scalarization 
belong to this class, the most obvious one being 

N 

Go g(d) = I c,g,(d), c > 0 
1=1 

When the attainable set Y is convex, the c, in Go g( ·) may be used to 
parametrize the EP set by minimizing Go g(d) for different choices of c. 
That is, Go g(d) may be used to generate the EP set. 

Another, relatively obvious, sequential scalarization approach is the 
so-called lexicographic method. Suppose that the numbering of the criteria 
also reflects the order of their importance, with "1" denoting the most 
important. Then, g1( ·) is minimized first with g1 = min {g1(d): d E ~} and 
with optimal decisions ~~ = {d E ~: g1(d) = g1}. The next step yields g2 = 

min {g2(d): d E ~ 1 }, and so on, until a minimizing solution is unique or 
until all N of the criteria have been considered. This process terminates at 
an EP optimum. 

Many of the scalarization methods depend on the specification of some 
goal vector g; that is, a goal g, is set for each ofthe N criteria. In recognition 
of the fact that not all goals are attainable, one then provides a measure of 
deviation from the specified goal, with the aim of minimizing the deviation 
in some fashion. In a manner of speaking, one seeks to find that point in 
the attainable set that is closest to the specified goal vector. These methods 
are characterized by their choice of the measure of deviation. 

The measure of closeness in IRN is generally accomplished by metrics 
of one form or another. Thus, a common measure of the deviation is the 
LP metric 

[ 
N J 1/p 

G(y) = ~~~ (y,- g.)P ' l:Sp<oo 

which is then termed a regret function, or compromise function in the more 
picturesque speech of economists or the business community. When gi = 

min {g,(d): d E ~}, then the goal g is also called an utopia, or ideal point. 
As long as the chosen G( ·) satisfies the requirement of Lemma 1.6, the 
method again terminates at an EP optimal decision. 
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An exception thereto is given by the minimization of the p = oo norm 

G(y) = max IYi- g,l 
~~~~N 

subject to y E Y, which does not necessarily yield an EP optimum. It can 
be asserted, however, that at least one of the solutions is EP optimal. Thus, 
if the minimum is unique, it is EP optimal. 

Goal programming is based on similar premises. Suppose c; and c7 
denote the underachievement and the overachievement of the ith goal, 
respectively. Then the following programming problern again minimizes the 
deviation from the specified goal: 

minimize [.~1 (c; + c7Y J 11
P, l~p<OO 

subject to d E ~. g,(d) + c;- c7 = g., Vi EI, c7 · c; = OVi EI, where I= 
{ 1, ... , N}. Rather than scalarizing with just a single criterion, it is more 
often customary to mix this approach with the previously mentioned lexico
graphic method, that is, to require an ordinal ranking of the criteria. With 
this ranking in mind, one then introduces N achievement functions, 
hi(c+, c-), which arelinear in the achievement variables, c+ and c-. These 
achievement functions are minimized in sequence, in such a way that a 
lower ranked achievement function cannot be optimized to the detriment 
of a high er ranking one. An extensive discussion of this approach, together 
with numerical algorithms and examples, is given in Ref. 16. 

A formulation of the goal attainment method is included as a final 
variant of this approach. Therein, the underachievement or overachievement 
ofthe goal is characterized by a weighting vector w. The scalarized program
ming problern has the form: Minimize z, subject to d E ~. g(d)- zw ~ g, 
w > 0, where z is an unconstrained scalar variable and where w generally 
is normalized with 

One caveat needs tobe included. Unless the goal vector g is appropriately 
chosen, there is no guarantee that these goal programming methods will 
terminate at an EP optimal solution. 

As mentioned earlier, one ofthe reasons for scalarization is the ultimate 
need and desire for a unique solution-a design that is to be implemented. 
There is a final, physically meaningful lexicographic approach that does 
Iead to the selection of a final single design from the EP set. One may 
consider the EP optimization to be a preliminary design process with respect 
to N rough or large-scale criteria. This design is then refined with the 
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imposJtJon of ( N - 1) independent additional constraints. For example, 
suppose that a structural design has been optimized with respect to the 
criteria mass and strain energy with EP optimality as the optimality concept. 
These criteria tend to take the overall behavior of the structure into account. 
The EP optimization produces a one-parameter family of optimal designs. 
One may then select a particular member of the family by specifying the 
maximum deftection or the maximum stress. 

It would seem that this approach would be well suited for computer
aided design in interaction with the design engineer. The EP set would be 
determined first, with the designer making a final selection based on secon
dary desiderata. 

With few exceptions, numerical methods are tied to universal or sequen
tial scalarization of the vector optimization problem. Such methods are 
often tailored to the solution of a particular kind of problern and are thus 
best investigated in connection with the problern under consideration. Thus, 
discussions of numerical methods are included with most of the papers in 
this volume which deal with large-scale problems. Numerical methods for 
the linear multicriteria problern are discussed in some detail in Chapter 2. 

1.7. Concluding Remarks 

Where applications are concerned, Edgeworth-Pareto optimality has 
established itself as nearly the only viable optimality concept when a 
comparison between several competing desiderata is to be reached. The 
concept fares well from the traditional single-criterion optimization point 
of view, since it disallows any decision for which all the criteria could still 
be improved; indeed, it provides clear information concerning the com
promises that must be made. Exceptions to the rule consist merely ofvarious 
refinements termed "properly efficient" points which eliminate some poss
ibly undesirable decisions from the EP set, as well as allowing the derivation 
of more selective necessary conditions. Such properness becomes par
ticularly relevant in abstract vector optimization (e.g., see Ref. 12). 

This preference for EP optimality has advantages and disadvantages. 
Wide acceptance of a concept is needed to make it palatable in practice; 
as a consequence, however, many interesting and useful optimality concepts 
have remained relatively unknown to the possible user. 

In particular, optimal decisions in antagonistic game theory may be 
equally weil used by a single decision maker who would like decisions that 
display the attributes of the particular game theoretic optimum. By way of 
example, the Nash equilibrium provides a fault tolerant optimality concept. 
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Let d, E ::0; and Iet d == (d~> d2 , ... , dN) E f0 c !Rn with corresponding 

criteria g;(d), i EI== {1, ... , N}. 

Definition 1.15. Nash Equilibrium (Ref. 17). A decision d E ::0 is a 

Nash optimal decision for the collection of criteria g,( · ), i E I, iff 

(1.3) 

for every i E I, and for every d E ::0. 

One of the main aspects of Nash optima is that a player cannot 

unilaterally improve himself; that is, if he moves from his Nash optimal 
decision d; E ::0; to another decision d, E ::0;, his criteria value will continue 

to satisfy the inequality ( 1.3 ), provided all of the other decisions remain 

fixed at their Nash equilibrium values. Two possible uses of this property 

are apparent: 

1. If, in some problem, there is one fluctuating parameter while all 

others remain relatively stable, then the latter may be used to control 

the unstable one. 
2. In many problems, there are parameters that arenot directly control

lable by a decision maker. The effect of such uncontrollable param

eters may then be eliminated by fixing the values of the controllable 

parameters. 

Another concept that has similar implications is the min-max decision 

for a particular criterion-a concept that has extensive use in zero-sum 
game theory. Let d-' == (d1 , d2 , .•• , d,_ 1 , d,+ 1 , ••• , dN) E ::0-', the Cartesian 

product of the decisions sets, excluding the ith decision set. 

Definition 1.16. Min-Max Solution. A decision d; E ::0; is the min

max solution for the ith criterion iff 

g;(d1 , ••• , d;_ 1 , J., d,+ 1 , ••• , dN) == min max g,(d) 
d 1E2 1 d~ 1 E0J'-t 

Theorems that characterize these last two optimality concepts may be 
found in most books on continuous or differential games. 

One final comment in this connection. It is apparent from Chapter 4 

of this volume that the economic equilibrium model is an extremely refined 

mathematical model, where a number of desirable and intuitively acceptable 
conditions are satisfied. It would seem to be of considerable interest to 

develop engineering design models that could make use of the rich results 

obtained within economic equilibrium theory. 
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The intent of this chapter was the presentation of what might truly be 
termed the fundamentals of the subject, in enough detail so that the inter
ested reader can begin to work his own multicriteria optimization problems. 
Overall, an effort has been made to help the reader note the ease with which 
one may make the transition from single criterion optimization to multi
criteria optimization. To put it simply, the reader is just a scalarization away. 

Ml'lticriteria optimization may be applied in any area of scientific 
endeavor where decisions can be quantized in some fashion. Generally, 
however, the existence of an accurate mathematical model of the physical 
phenomenon is desirable, since only then is it worthwhile to carry out the 
sometimes tedious optimization process. The effort in this volume has been 
the presentation of applications of multicriteria optimization that are based 
on relatively weil established mathematical models in engineering and in 
the sciences. The surveys by the author indicate that there are many more. 
It is hoped that this volume has provided an impetus toward the use of 
multicriteria optimization in engineering and in the sciences. 
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Numerically Analyzing Linear Multicriteria 
Optimization Problems 

JERALD P. DAUER 1 

2.1. Introduction 

The topic of numerical methods in multicriteria optimization lends 
itself to many interpretations, and, of course, much has been written on the 
subject. This chapter will not be a survey of the numerical techniques of 
multicriteria optimization (MCO). Those interested in such a work should 
see, for example, the book of Hwang and Masud (Ref. 1). Nor will this 
chapter contain camparisans of the numerical efficiency of a variety of 
MCO algorithms. Instead, this work will be on my views and experience 
in numerically analyzing "real" linear MCO problems and the mathematics 
necessary for such an analysis. Of course, "real" means MCO problems as 
I have encountered them in applications. Imaginary ( or unreal) must there
fore refer to all the rest. 

To be a little more precise, we consider the linear MCO (LMCO) 
problern 

optimize Cx 

subject to Ax = b 

x~O 
(LMCO) 

where C is a k x n matrix and A is an m x n matrix. The state or decision 
space, x E IR", will possibly be !arge. For example, in water resources 
applications in river basin planning and development screening models it 
is reasonable to expect at least 1500 variables with 600 or more constraints 
and many bounds. On a more modest scale, in this paper we will include 
some specific remarks on the simplified river basin model developed by 
J. P. Dauer and R. J. Krueger (Ref. 2). This example, which has 3 objectives, 

1 Department of Mathematics and Statistics, University of Nebraska, Lincoln, Nebraska 
68588-0323. 
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40 variables, 18 constraints, and 12 bounds, gives a modest-sized LMCO 
that reasonably approximated the actual screening model and allowed 
inexpensive preliminary computer experimentation. Such trials were 
necessary in order to evaluate possible techniques for analyzing the full 
screening model. 

I find that an essential aspect of analyzing such a multiple objective 
model is an understanding of the mathematical structures involved. This is 
even more crucial in MCO than in single objective models since there one 
has only one "optimal" objective value. Therefore, much of this work will 
be concerned with the theoretical concepts that I find essential for a complete 
numerical analysis and understanding of a "real" LMCO problem. 

In Section 2.2 the basic definitions and a few standard results for 
LMCO are reviewed. The main focus of Section 2.2, however, is devoted 
to some fundamental results and techniques for analyzing the efficiency 
structure of the constraint set 

X= {x E !Rn: Ax = b, X~ 0} 

The knowledge of how to analyze the structure of the convex polytope X 
is, of course, fundamental in any thorough understanding of how to analyze 
LMCO problems. However, the limitations of any approach based on 
characterizing the efficiency structure of X are also apparent when consider
ing !arge problems. These limitations and related aspects of numerical 
methods will be addressed in Section 2.3, where the Dauer-Krueger example 
will be discussed. This section will examine parametric techniques as weil 
as introduce the general approach of analyzing the convex polytope of 
objective values 

Y = { y E IR k: y = Cx, x E X} 

In Section 2.4 a thorough treatment of the structure of Y will be presented. 
This is relatively new material on a problern that has been neglected in the 
MCO literature. At this point I hope it will be clear that in many "real" 
problems the set of objective values, Y, is the proper set to numerically 
analyze, that any such analysis must include the relative trade-off values 
(shadow prices) between objectives, which also characterize the faces of Y, 
and that, besides, in many "real" problems the constraint set Xis too !arge 
and overly complex to analyze fully. 

2.2. State Space Analysis of LMCO Problems 

Consider the LMCO problern with convex constraint polytope 

X = {x E !Rn: Ax = b, X~ 0} 



www.manaraa.com

Numerical Analysis 29 

We will use the notation that for w, z E IRP w ~ z means w, ~ z, for each 
component i = 1, 2, ... , p, and that z > 0 means z, > 0 for each i. 

The standard definition is that a vector i E X is said to be efficient for 
LMCO if there is no x E X such that 

Cx ~ Ci and Cx "" Ci 

In other words, i is efficient in X ifthere is no other decision (state) vector 
x E X whose objective values dominate the objective values of i. Motivated 
by this we say that the objective value ji is nondominated for the convex 
polytope 

Y = C[X] = {y E ~Rk: y = Cx, x EX} 

if there is an efficient i E X such that ji = Ci. 
The basic properties of the set of efficient points of X can be found 

in the work of Zeleny (Ref. 3). However, the following well-known charac
terization is fundamental in the development ofmany ofthe results discussed 
in this work. 

Theorem 2.1. A vector i E X is efficient for LMCO if and only if 
there is a AT E ~Rk with A > 0 such that i is an optimal solution of the linear 
program 

maximize ACx 
xEX 

From a geometric linear programming point of view, Theorem 2.1 
shows that i is an efficient point of X if and only if there is a hyperplane 
of the form 

Hp.,d = {x E IR": f.LX = d} 

where f.L = AC for some A > 0 and d = JLi, which is a supporting hyperplane 
to X at i with the constraint set X contained in the half-space 

H~.d = {x E IR": f.LX ~ d} 

Now consider the (finitely generated) polyhedral cone generated by the 
rows of the matrix, C; i.e., by the k objective coefficient vectors c., 

pos CT = { x E IR": x = .t a,c;, a, ~ 0} 

This cone has positive polar cone 

C* = {x E IR": Cx ~ 0} 

Since A > 0 implies (AC) T E pos C T we have that hyperplanes of the form 

Hp.,o = {x E IR": f.LX = 0} 
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where J.t = AC for some A > 0, are supporting hyperplanes to the cone C* 
at the origin and that the cone lies in the half-space 

H~.o = {x E IR": J.tX ~ 0} 

Therefore, Theorem 2.1 can be rewritten geometrically in terms of separating 
hyperplanes as the following known result (Ref. 4, p. 211). 

Theorem 2.2. A vector x E X is efficient for LMCO if and only if 
there is a AT E IRk with A > 0 such that the hyperplane 

Hf.<,d = {x E IR": J.tX = d} 

where J.t =AC and d = J.tX, separates X and x + C*. 

Let us now view this result considering C* as the set of directions 
along which the objectives improve (or, as Philip described, "C* is the 
cone of good directions"). This is clear, since Cx ~ Cx if and only if 
C(x- x) ~ 0, i.e., (x- x) E C*. Theorem 2.2 then becomes a restatement 
of the definition of efficiency, namely, that x E X is efficient if and only if 
there is no direction in X along which we can move from x and improve 
the objectives. More precisely, x is efficient if and only ifthere is no solution 
z = x - x of the system 

Cz ~o. Cz ~ 0 

Az = 0, z+x~O 
(2.1) 

When the constraints defining X are ofthe form Ax;;; b, x ~ 0 Tucker's 
theorem of the alternative (Ref. 5, p. 29) can be used to show that the 
system corresponding to Eqs. (2.1) has no solution if and only if there is a 
solution of the Kuhn-Tucker system (see Ref. 6, Theorems 4 and 5) 

AC-a(~/) =0 

A ~ e, a ;;; 0 

This result has been pursued by Philip (Ref. 4, Theorem 3, p. 211) for the 
active constraints at x, which yielded an algorithm for determining whether 
x is efficient (see also Refs. 7 and 8). Dauer (Ref. 9, Corollary 2.2) extended 
Philip's result by showing that the active constraints at x that are an inftuence 
in system (2.1) are those whose coefficient vector a; does not lie in the null 
space of C. 

Let us now change our thinking from directions in X that improve the 
objectives to directions in the objective set Y. After all, these are the actual 
value changes that occur in the objectives. To analyze changes in the 
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objective values let i be a nondegenerate extreme point of X with corre
sponding nonsingular basis B from the columns of A. Then, as in the 
simplex approach to linear programs, we partition the matrix A = [B, N] 
with corresponding partitions C = [C8 , CN] and x = (;~). For any x EX 
the associated basic variables can be written 

(2.2) 

The augmented matrix 

~) 
is equivalent to the (multiple objective simplex) canonical form 

Here 

is the reduced cost coefficient matrix for the basis B and 

YB = CBB-'b 

is the corresponding vector objective value for the extreme point, i = ( 8 ~'b), 
of X corresponding to the basis B. Therefore, given a basis B and any 
x =(;~)EX we have 

y = Cx = C 8 x 8 + CNxN 

(2.3) 

= YB + RxN 

In other words, given a nondegenerate extreme point of X, written i = (~) 
for a basis B, the set Y is characterized locally at y = Ci by the cone 

{Y + Ra: a E IR"-m, a ~ 0} 

which has vertex y (but is not necessarily pointed). 
Therefore, for the matrix R = [ r1 , ••• , rn-m] we let 

pos R = (y E !Rk: y = ~~~ a,r" a, ~ o) 
Then Eq. (2.3) shows that locally at y we have 

Y = y + pos R (2.4) 
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Hence the possible changes in the objective values are given by the cone 
pos R. One key for analyzing efficient points of X can be given in the 
following result. 

Theorem 2.3. Let B be a basis of A corresponding to a nondegenerate 
extreme point of X with 

R = CN- CBB- 1 N 

Then jl = C8 B- 1 bis a nondominated point of Y if and only ifpos R contains 
no element y ~ 0 with y -F- 0. 

If we Iet the nonnegative orthant of !Rk be the cone denoted by 

[Rk+ = {y E !Rk: y ~ 0} 

Then we always have 0 E (pos R) n !Rk+. Since pos R and !Rk+ are both 
closed convex cones and at least !Rk+ has nonempty interior, the results of 
Theorems 2.1 and 2.3 can be rephrased in terms of separating convex sets 
by a hyperplane as depicted in Fig. 2.1. 

Geometrically it is clear that any hyperplane HA,o that strictly supports 
the pointed cone !Rk+ with 

HA,o n !Rk+ = {0} 

must have A > 0, and conversely. Therefore, the following known charac
terization of efficiency follows. 

Theorem 2.4. Suppose x is a nondegenerate extreme point of X with 
reduced cost coefficient matrix R. Then x is efficient if and only if there 
exists a AT E !Rk with A > 0 such that AR ~ 0. 

Fig. 2.1. The separating hyperplane for 
convex cones. 
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Note that this result also follows from Theorem 2.1 since AR is the 
vector (simplex) of reduced cost coefficients at the point x for the single 
objective ACx. 

Remark 2.1. Given a nondegenerate extreme point x of X, the results 
in Theorems 2.3 and 2.4 give a convenient method for determining whether 
x is efficient. N amely, x is efficient if and only if zero is the optimal objective 
value of the linear program 

maximize ey 

subject to RJL + y = 0 

JL ~ 0, y~O 

Here e = (1, 1, ... , 1) is 1 x k, and the constraints are only a restatement 
of the condition that y E pos R and y ~ 0. This linear program is easily 
analyzed since (J-t, y) = (0, 0) is a feasible solution and the only question 
is whether or not (0, O) is optimal. A result similar to this was developed 
by Bod (Ref. 10, Theorem li) and by Evans and Steuer (Ref. 8, Corollary 
2.2). 

Let us now suppose that x is an efficient extreme point of X with 
corresponding basis B and reduced cost coefficient matrix R. There are two 
questions that arise depending on which of the preceding viewpoints one 
takes. One question is which nonbasicvariables (columns of N) correspond 
to efficient edges of X when pivoted into the basis. This question will be 
addressed in this section. The second question is which columns of R are 
nondominated edges of Y. This question will be addressed in the section 
on the analysis of the objective space, Section 2.4. 

We now consider the problern of determining the efficient edges of X. 
Note that by Theorems 2.1 and 2.2 a point x in the relative interior of an 
edge of X is efficient if and only if there is AT E ~k with A > 0 such that 
the hyperplane HJ.',d' with JL =AC and d = ACx, supports X along the 
entire edge. This characterization of efficient edges is natural and funda
mental in analyzing the efficient structure of X. However, we now pursue 
results similar to Theorem 2.3 when x is an efficient extreme point of X 
with corresponding basis B and reduced cost coefficient matrix R. 

Suppose xj is a nonbasic component for the basis B with corresponding 
column rj in R. Let x be the extreme point of X adjacent to x that results 
when pivoting the column x1 into the basis. Since x is efficient, x will be 
an efficient extreme point of X if and only if the entire edge 

[x, X)= {x: X= ax + (1- a)x, 0 ~ a ~ 1} 



www.manaraa.com

34 Jerald P. Dauer 

is efficient (Ref. 3). Thus, x is efficient if and only if the direction r1 in Y 
is a nondominated direction at y. Note that ji = Cx need not be an extreme 
point of Y and y + ar1 need not correspond to an edge of Y (Ref. 9). 
Hence, this analysis is not addressing the second question posed above. 

In order to characterize when the direction r1 in Y is nondominated 
at y, recall that all directions in Y at y are characterized by Eq. (2.4) 
as pos R. Hence x is efficient in X if and only if r, is nondominated in 
pos R; i.e., if and only if there is no a ~ 0 suchthat Ra ~ r, and Ra 7"'- 'J· 
Considering the system 

s =Ra-r, 
(2.5) 

a ~ 0, s ~ 0 

then we have that x is efficient (and r1 corresponds to a nondominated 
direction in Y at _V) if and only if system (2.5) has no solution with s 'I= 0. 
This Ieads to the following well-known result. 

Theorem 2.5. Suppose x is an efficient nondegenerate extreme point 
of X with reduced cost coefficient matrix R. Then pivoting the nonbasic 
column x1 into the basis will produce an efficient extreme point x (and 
consequently an efficient edge [x, x]) of X if and only if zero is the optimal 
objective value of the linear program 

maximize es (2.6) 

subject to Ra - s = r1 

a ~ 0, s~O (2.7) 

Remark 2.2. As before, this linear program is easy to analyze. Since 
r; is a column of R an initial feasible solution is s = 0, a = e1 , and the only 
question is whether or not the optimal solution has s 7"'- 0. 

An algorithm for determining adjacent efficient extreme points of X 
based on the linear program (2.6), (2.7), with computational experience, 
was developed by Evans and Steuer (Ref. 8). Somewhat similar algorithms 
were developed by Ga! (Ref. 11) and Eckerand Kouada (Refs. 12 and 13). 
A dual approachwas used by Isermann ( Ref. 14). The problern of generating 
efficient faces of X was approached, for example, by Ecker, Hegner, and 
Kouada (Ref. 15). As has been recognized by these authors, degeneracy of 
x poses special problems when determining the extreme points of X adjacent 
to x using R since the number of such extreme points may exceed the 
number of nonbasic variables (see e.g., Ref. 8, p. 71). 
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Remark 2.3. The problern of degeneracy of x does not influence the 
description of Y in Eq. (2.4) in a significant way. To see this note that given 
a particular basis B, corresponding to the extreme point x, Eq. (2.2) gives 
a valid expression of each solution x = (;~) of Ax = b in terms of the 
nonbasic components of xN. Therefore, Eq. (2.3) gives all values of y that 
are possible for solutions of Ax = b; in other words, R contains all directions 
that are possible from y. Clearly if x = ( 8 ~ 1 b) is nondegenerate then x = (;~) 
given by (2.2) will be nonnegative for all small xN ~ 0. In this case Y is 
completely characterized locally at y by expression (2.4). In the case of 
degeneracy of x infeasible directions r1 , which Iead to x 8 l: 0, need to be 
eliminated from R before (2.4) gives an accurate description of Y. However, 
alternate bases describing x need not be analyzed. 

As the Iiterature demonstrates, the results of Theorem 2.5 provide the 
basis for several effective algorithms for determining the efficient extreme 
points of X Degeneracy of x, which must be expected frequently especially 
in !arger "real" problems, presents a computational hindrance but is not 
a Iimitation of the algorithms as different bases at x can be examined when 
x is degenerate. However, the most serious Iimitation of these algorithms, 
one that has generally been overlooked in the literature, is actually inherent 
in the problem, not in any particular approach to the problem. Namely, 
when attempting to analyze the extreme points, edges, and faces of X, one 
must realize that as m and n increase X has an increasingly complicated 
structure with increasingly many extreme points. This, of course, has been 
recognized in the linear programming Iiterature especially in the 1960s and 
1970s when the size of "real" linear problems grew. We leave this section 
recognizing that these mathematical characterizations and insight are essen
tial for further analysis and that the X-based algorithms are intuitive and 
efficient when extreme points of X are needed. 

2.3. Numerically Analyzing "Real" Problems 

Consider a LMCO where the dimension of the state space, containing 
the constraint set X, is !arger than the dimension of objective space, which 
contains the set of objective values 

Y = C[X] 

Depending on the objective map C, the structure of the convex polytope 
Y can be substantially simpler than that of X In particular, extreme points 
of X do not necessarily map to extreme points of Y and edges of X do 
not necessarily map to edge of Y. This is demonstrated by Example 4.1 of 
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Ref. 9, where n = 4 and k = 3. In this example C maps a three-dimensional 
pyramid shaped face of X onto a two-dimensional triangular face of Y 
with one extreme point and three edges of X being mapped into the relative 
interior of the face of Y In Ref. 16, Dauer and Liu give an example with 
n = 3 and k = 2 in which a two-dimensional face of X with five extreme 
points is mapped to one edge of Y In this example three extreme points 
of this face of X do not map to extreme points of Y 

A dramatic example of the collapsing effect that C can have when 
mapping X to Y is seen in the Dauer-Krueger water resource model (Ref. 
17). This river basin screening model has approximately 1500 variables, 600 
constraints and bounds, and three primary objectives. Obviously, X c:; IR 1500 

has many extreme points. It seems that an analysis based on enumerating 
all efficient extreme points of X, each of which has approximately 500 basic 
variables, is not a realistic approach. 

In order to evaluate the techniques available for analyzing this !arge 
model, Dauer and Krueger developed a modest-sized model that retained 
the general physical characteristics ofthe !arge screening model. This smaller 
model has three objectives, n = 40 and m = 18 with 12 bounds on the 
variables. According to the estimates in the linear programming Iiterature 
the constraint set X could have as many as 1014 extreme points (Ref. 18). 
It is not known how many ofthese extreme points are efficient but El-Abyad 
(Ref. 19) has used parametric programming methods to identify over 40 
efficient extreme points of X that do not map to extreme points of Y The 
method of constraints, which will be discussed later, was used in Ref. 20 
to identify the nondominated structure of Y for this model. The set Y was 
found to have only 21 nondominated extreme points and 12 nondominated 
two-dimensional faces. This approach was then used to analyze the !arge 
screening model (Ref. 17). 

The method of constraints has been recognized as an efficient technique 
for analyzing the nondominated objective values of MCO problems for 
some time. Cohon and Marks (Ref. 21) attribute the development of this 
approach to Facet. However, others seem to have also been originators.2 

This is not surprising since the approach is natural, particularly for k = 2 
(see, e.g., Ref. 22 and the general setting and references in Ref. 23). What 
is not widely recognized isthat the technique is also a very effective technique 
in the case of three or four objectives, as we shall demonstrate. The distinct 
advantage of this method is that any linear programming code with 
parametric capabilities can be used in the method of constraints. Hence the 
method can be used to analyze very !arge linear MCO problems. It is also 
a valid approach for analyzing nonlinear MCO problems. 

2 According to Cohon, Facet never published any of his results; the presentation of the method 
in the Iiterature must thus be attributed to Yacov Haimes. 
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Consider first a two-objective LMCO, 

maximize y1 = c1x 

maximize Y2 = c2x 

subject to Ax = b, 

37 

x~O 

The nondominated structure for this problern can be completely analyzed 
using the following parametric linear program: 

subject to c2x = a 

Ax = b, 

Here the parameter range of interest is 

where 

subject to Ax = b, 

x~O 

x~O 

(2.8a) 

(2.8b) 

(2.8c) 

and a 1 = maximumxES c2x, S is the set of all optimal solutions i of the 
program 

maximize c1x 

subject to Ax = b, x~O 

Note that in applications it is not usually necessarily to precisely define a 1 

and a 2 , especially a 1 • When using !arger intervals &1 ~ a ~ a2 it is easy 

to determine the nondominated solutions. Parametrically solving (2.8) yields 
the nondominated objective values as a curve in y 1J2 space (Fig. 2.2). 

y, 

Fig. 2.2. Nondominated objective values in y 1y2 space. cx, y 
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Note that the points ji and y do not necessarily correspond to extreme 
points of 

X= {x: Ax = b, x ~ 0} 

Instead they correspond, respectively, to points where the hyperplanes 

Hc,,a = {x: C2X = a} 

with a equal to appropriate ä and a, intersect edges of X. These points 
will, of course, be at extreme points of the constraints (2.8b, 2.8c). 

Note also that the slope 8 of the Iine segment [ ji, y] is the dual variable 
corresponding to the constraint (2.8b) for all a E ( ä, a ). In other words, 8 
is the important shadow price 8 = ßy1/ Ay2 which gives the useful tradeoff 
value of objective Yl versus objective Y2 in the range ä ~ a ~ a. 

Last, note that once the linear program (2.8) is solved for a = a 1 the 
points ji, y, etc., are determined through successive one pivot basis changes. 
Therefore, Fig. 2.2 would be determined by using the simplex method once 
and then with only four additional pivots, i.e., with very little work beyond 
that required to solve a single linear program. 

Now consider analyzing a. three-objective LMCO 

maximize y 1 = c1x 

maximize Y2 = c2x 

maximize y3 = c2x 

subject to Ax = b, x ~ 0 

To use the method of constraints we consider the parametric linear program 

subject to c2x = a 

x~O 

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

where the parameters a and ß range over appropriate intervals, as in (2.8). 
As in the two-objective case (2.8), Fig. 2.3 is developed as in Ref. 17 (Fig. 
1, p. 173) with a ranging over appropriate intervals and ß set at five specific 
Ievels. Again note that the range of a need not be specifically determined 
as long as it contains [ a 1 , a 2]. 

The dual variables ( 8, J-L) to the constraints (2.9b ), (2.9c) again identify 
the important tradeoffs between objectives (the shadow prices): 
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Fig. 2.3. The metbad of constraints for three 
criteria. 
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y, 

In this case, the various (5, J.t) identify nondominated surfaces of Y (see 
Ref. 20, Fig. 1, p. 38). These surfaces are thus easily obtained and can be 
conveniently displayed using, for example, computer graphics. This alge
braically characterizes Y, its nondominated faces and extreme points (Ref. 
20), and gives useful information to the decision maker who needs to apply 
this analysis of (2.9). 

A LMCO with four objectives is analyzed by the method of constraints 
via the parametric linear program 

maximize c1x 

subject to c2x = a 

c3x = ß 

Ax = b, x~O 

Here we set the parameter y equal to each of a finite number of values. At 
each value y = ii the remaining two-parameter program is solved as (2.9) 
yielding an analysis of the nondominated values of the first three objectives 
as in Fig. 2.3 for a fixed value of y 4 = c4x = ')i. By comparing the various 
figures, with corresponding trade-off values, a decision maker is able to 
understand how the nondominated values change as the fourth objective 
changes. 

A modification of the method of constraints utilizing lexicographic-goal 
programming methods was developed by Dauer and Krueger (Ref. 17) for 
LMCO with a !arger number of objectives provided these objectives can be 
classified into groups with different priorities. Haimes (Ref. 24) numerically 
analyzed models with five objectives. It should be recognized that with four, 
five, or more objectives it is difficult for a decision maker to compare 
alternatives. 
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Many people mistakenly feel that the method of constraints and the 
parametric linear program 

maximize ACx 

subject to Ax = b, x~O 

(2.10a) 

(2.10b) 

with A > 0, can be used interchangeably. After all, the dual variables ( 8, J.L) 
from the method of constraints when written A = (1, 8, J.L) do precisely 
correspond to such a weighting of the objectives as in (2.10a). However, in 
practice, the parametric program (2.10) has difficulty identifying the faces 
of Y. Theoretically, if Ä is the normal vector to a face of Y then solutions 
of (2.10) with A = Ä should lie on that face. Unfortunately, computer 
roundoff of Ä cannot be controlled adequately, for example, if Ä is irrational. 
In such a case the program (2.10) would only define an edge of the face 
corresponding to Ä since the computer adjusted value is not parallel to Ä. 
One might hope that ( 2.10) could at least be used to define nondominated 
edges of Y. However, EI-Abyad (Ref. 19) has demonstrated that frequently 
the parameter in (2.1 0) cannot be adjusted in such a way as to systematically 
identify Y as the method of constraints did in Fig. 2.3. Instead, varying the 
parameter A tends to identify certain edges repeatedly while nearby edges 
of Y arenot uncovered. One distinct advantage to (2.10), however, isthat 
all simplex solutions will be extreme points of X, although these points will 
not necessarily correspond to the extreme points of Y. 

2.4. Analyzing the Objective Set Y 

Understanding the geometric structure of Y and its relation with X 
via the map C: X --> Y is of theoretical interest, a natural completion to 
the study of Section 2.2. However, as the examples mentioned in Section 
2.3 demonstrate, there is a great deal of practical advantage to be gained 
from analyzing Y An understanding of the structure of Y is, therefore, 
important in order to develop approaches and techniques for such an 
analysis. 

Early approaches to understanding the relationship between certain 
aspects of the structure of Y and that of X had difficulties analyzing the 
roles of several types of degeneracies (Refs. 25-27; see Ref. 9 for a complete 
discussion). As mentioned in Section 2.2, simplex degeneracy does play a 
roJe in the analysis of adjacent extreme points of X. As Remark 2.3 pointed 
out, such degeneracy plays a different and less restrictive roJe in analyzing 
the structure of Y 

Recent work has algebraically characterized the structure of Y and its 
relation with X via the map C: X --> Y (Refs. 9, 20). These characterizations 
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have led to techniques for determining the nondominated extreme points 
and faces of Y (Refs. 16, 19, 28). The key ideas in this analysis are the role 
of the cone pos R in Eq. (2.4), with Remark 2.3, and the collapsing of X 
caused by C, as mentioned in Section 2.3. We now discuss these concepts. 

For the developments in this part we rewrite the constraints in LMCO 
in the form 

X = {x E IR": Äx:;;; b} 

and assume that the k x n matrix C has rank k. For a characterization of 
redundant objectives see Gal (Ref. 29). 

The faces of X are defined through the intersection of hyperplanes of 
the form 

Ha,b, = {x E IR": ax = b.} 

Likewise, the faces of the convex polytope 

Y = C[X] 

are defined via the hyperplanes that result from C mapping various Ha,b,. 
Again these hyperplanes in IRk will be determined by vectors A that are 
orthogonal to them, vectors that correspond to the shadow prices discussed 
in Section 2.3. 

To examine the set of A describing Y Iet V be a subspace of IR" with 
W = C[ V]. Here the orthogonal complement of a subspace S is written 

Sj_={w:wTs=O 

Then, AT E wj_ if and only if 

for all s E S} 

(AC)T E vj_ n R(CT) 

where R( C T) is the range of C T. So the map, 

CT: wj_-+ vj_ n R(CT) 

(2.11) 

is an isomorphism correlating the normal vectors in the image W with 
certain normal vectors of V. This property can be used to obtain the following 
result pertaining to the faces of X and Y (Ref. 9, Theorem 2.1). We write 
the null space of C as 

N(C) = {x E IR": Cx = 0} 

and so we have N( C)j_ = R( C T). 

Theorem 2.6. Let C have rank k and a TE IR" be nonzero. Then C 
maps the hyperplane 

H = {x E IR": ax = d} 

onto a hyperplane of IRk if and only if a TE N( C)j_. Furthermore: 
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1. If aT E N(C)j_, then 

C[H] = {y E !Rk: Ay = d} 

where A is the unique solution of AC = a. 
11. lf aT E N(C)j_, then C[H] = !Rk. 

Let F be a face of X and Iet Id( F) denote the indices of the active 
constraints that define F. Then 

F = {x E !Rn: Äx ~ b and a,x = b;, i E Id(F)} (2.12) 

The smallest linear manifold containing F, called the carrying manifold of 
F, is denoted by 

M(F) = {x E !Rn: a;x = b" i E Id(F)} (2.13) 

The dimension of F is the dimension of M ( F) and is equal to n - p, where 
p is the number of linearly independent a, with i E Id(F). From (2.13) the 
manifold M(F) and hence the face F can be defined using only p linearly 
independent a, with i E ld( F). From Theorem 2.6 it is natural to consider 
the set 

I= {i E ld(F): a; E N( C)j_} 

Unfortunately, I does not identify the face C[ F] of Y, even with Theorem 
2.6. In fact, the set I may be empty. Instead, for a set ofvectors a1, a2, ... , ak, 
denote the linear subspace spanned by the vectors as (a 1 , a2 , .•• , ak> and 
define the subspace 

S = (a;: i E Id(F)> n N(C)j_ (2.14) 

By setting b, = 0 in (2.13) the manifold M(F) is translated to the 
subspace 

S(F) = {x E !Rn: a,x = 0, i E ld(F)} 

The isomorphism (2.11) then implies that 

C[S(F)] = C[S]j_ 

which is the key to the following characterization of the faces of Y via their 
normals (Ref. 9, Theorem 2.3). 

Theorem 2.7. Let F be a face of X defined in (2.12) and Iet S be the 
subspace given by (2.14) with a basis { al' a2, ... ' aq} satisfying 

o1 = I ß{a; (2.15) 
icld(F) 
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For eachj = 1, 2, 0 0 0, q, Iet A1 be the unique solution of A1C = a1 and define 

~ = I ß{b;, 
iEid(F) 

where {ßf} are given in (2015)0 Then the dimension of C[F] is k- q and 

C[F] <:; {y E Y: Ajy = b1,j = 1, 2, o o 0, q} 

which is the face of Y of dimension k - qo 

This result Ieads to characterizations of efficient points and faces of X 
similar to that of (201)0 lt also allows an analysis of the collapsing effect 
that the mapping C has on many faces of X. Here a face F of X is said 
to collapse under C if there is a subface F <:; F of X, F =Jf F, such that the 
dimensions of C[F] and C[F] are equal. We do not require, nor imply, 
that C[F] = C[F] (see Refo 9, Example 401, and Figo l.l)o Theorem 207 
gives the following characterization of collapsingo 

Theorem 2.8. Suppose F <:; F are two faces of X. The dimensions of 
C[F] and C[F] are equal if and only if 

(a(: i E Id(F)) n N(C).L = <aT:j E Id(F)) n N(C).L 

Philip (Ref. 25) attempted to characterize similar behavior of C: X ~ Y 
using the following definition: A face F of X is said to be algebraically 
nondegenerate with respect to C if there is no nontrivial solution of the 
system of equations 

Cx = 0, 

for all i E Id(F) 

Or, expressed alternatively, Fis algebraically nondegenerate if and only if 

S(F) n N( C) = {0} 

However, algebraic nondegeneracy is only a special case of noncollapsing 
faces (see Refo 9 for a complete discussion)o In particular, Theorems 207 
and 208 can be used to obtain the following geometric characterization of 
this concept (Ref. 9, Proposition 302)0 

Theorem 2.9. The dimension of Fis equal to the dimension of C[F] 
if and only if F is an algebraically nondegenerate face of X. 

In order to address the problern of determining adjacent nondominated 
extreme points of Y we return to the notation 

X = {x E IR": Ax = b, x ~ 0} 
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of Section 2.2. Suppose x is an efficient extreme point of X with basis B 
and corresponding reduced cost coefficient matrix R. Following Remark 
2.3, if x is degenerate, then reduce R by eliminating any columns that Iead 
to infeasibility, x8 ~ 0, when these columns are pivoted into the basis. 
Therefore, from (2.4) we have that locally at ji = Cx 

Y = ji + pos R 

Thus, ji is an extreme point of Y if and only if the cone pos R is pointed. 
We assume that ji is an extreme point of Y. 

Using one of the methods mentioned in Section 2.2 we can select those 
columns 1j of R that correspond to efficient edges of X. Let the corresponding 
submatrix of these columns be RN. Then the nondominated edges of Y 
generate the polyhedral cone pos RN. Remark 2.3 shows that this is true 
even if x is degenerate. Hence, in order to study the nondominated structure 
of Y we analyze the cone 

ji + pos RN (2.16) 

To analyze this finitely generated cone we need to determine a set of 
generators. Any minimal set of generators, called a frame, of (2.16) will 
correspond in a one-to-one fashion with the nondominated edges of Y at 
ji (Ref. 16). Wets and Witzgall (Ref. 30) have developed an algorithm for 
determining the frame of a finitely generated cone. 

Therefore, suppose we have determined a frame for pos RN. Then we 
have determined a set of nonbasic columns of A = [B, N], corresponding 
to efficient extreme points of X adjacent to x, that identify the nondominated 
edges of Y adjacent to ji. The remaining efficient extreme points of 
X adjacent to x map either to a point on one of these known edges of 
Y or to a point in the relative interior of a face of Y. In either of these 
cases the remaining adjacent extreme points of X can be ignored when 
analyzing Y. 

Consider one of the generators, fj, of pos RN which corresponds to a 
specific nondominated edge of Y adjacent to ji. The extreme point of X 
adjacent to x that generated this edge of Y does not necessarily map to an 
extreme point of Y. However, such an extreme point of Y, which is of the 
form 

y = ji + 01j (2.17) 

for (J > 0, can be obtained by noting that it is the farthest point from ji in 
Y on the ray (2.17). Hence the nondominated extreme points of Y and 
corresponding efficient extreme points of X can be obtained by solving the 
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linear program 

maximize 6 

subject to Cx - 6r1 = y 

Ax = b 

6 ~ 0, X~ 0 
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(2.18a) 

(2.18b) 

(2.18c) 

(2.18d) 

for each rj in this frame of pos RN (Ref. 16). These linear programs are 
easily solved since x = x, 6 = 0, is an initial basic feasible solution. Note 
that owing to the collapsing effect of C along an edge rj of Y there can be 
extreme points of X, not necessarily adjacent to x, that lie on this edge. 
Some of these will arise as pivots in the solution of the linear program 
(2.18) (see Ref. 16, Example 4.1). However, no efficiency calculations need 
to be done at these points since they do not map to extreme points of Y 
Instead each requires only a simple pivot in (2.8). 

The collapsing effect of C : X ~ Y then can reduce the number of 
extreme points of X that need an efficiency analysis of their reduced cost 
coefficient matrix. Namely, such analysis is needed only at a set that is in 
one-to-one correspondence with the extreme points of Y However, at these 
points we will also perform a framing analysis. No analysis is needed at 
those extreme points of X that duplicate in identifying an extreme point 
of Y or at those mapping to the relative interior of a face or edge of Y 
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3 

Applications of Multicriteria Optimization in 
Approximation Theory 

J. ]AHN' AND W. KRABS2 

3.1. Introduction 

In this chapter we investigate certain vector approximation problems, 
which are approximation problems where a vectorial norm is used instead 
of a usual (real-valued) norm. About 50 years ago vectorial norms were 
first introduced by Kantorovitch (Ref. 1), who developed a mathematical 
theory of linear spaces equipped with a vectorial norm. Many important 
results known from approximation theory (e.g., see Refs. 2, 3) can be 
extended to this vector-valued case ( compare Ref. 4 ). In this chapter we 
present an application-oriented approach to vector approximation and we 
do not intend to formulate the results in the most general way. Therefore, 
we develop the proofs also in this special setting, although several results 
could be deduced from a general theory of vector approximation. 

The first section of this chapter is a collection of approximation prob
lems with multiple criteria that arise in applications. Characterizations of 
Pareto optima are described in the second section, where we use special 
scalarization techniques. Based on these theoretical considerations numeri
cal results are presented for two examples outlined at the beginning. Finally 
we formulate alternation theorems for Chebyshev vector approximation 
problems. 

3.2. Several Vector Approximation Problems 

In this section we present several vector approximation problems arising 
in different areas of approximation theory. We begin our discussion with 

1 Institute of Applied Mathematics, University of Erlangen-Nuremberg, D-8520 Erlangen, 
Federal Republic of Germany. 

2 Department of Mathematics, Technical University of Darmstadt, D-6100 Darmstadt, Federal 
Republic of Germany. 
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a very simple problern of simultaneaus Chebyshev approximationo The follow
ing example describes how to determine a "smooth" best approximation 
of a given functiono 

Example 3.1. Let f E C[ a, b] (real linear space of functions con
tinuous on [ a, b ], where -oo < a < b < oo) be an arbitrary function that 
should be approximated by a polynomial p of degree n given by 

n 

p(ao, 0 0 0, an; t) = I a.t' for all t E IR (301) 
1=0 

with unknown coefficients a0 , 0 0 0, an E IR. If 11°11 denotes the usual 
Chebyshev norm on C[ a, b ], ioeo, if 

llgll := max {lg(t)l} for all g E C[a, b] (302) 
IE(a, b] 

then appropriate coefficients a0 , 0 0 0, an can be determined by solving the 
Chebyshev approximation problern 

min llf- p(ao, o o o, an; 0 )II 
(ao, . . ,an)EIR!n+l 

Frequently, a solution (a 0 , 0 0 0, an) ofthis optimization problern results 
in a polynomial p(ao, 0 0 0, an; 0) that has a certain "wave behavior" (see 
Figo 301)0 In some cases one is interested in a smoother approximation, 
especially for the optimal design of certain shapes together with the use of 
CAD methodso In this case we assume that f is not only continuous but 
also differentiable up to the order N - 1 ( < n )o Then we get a smoother 
approximation by the simultaneaus minimization of 

and 
II!- p(ao, 0 0 0, an; 0 )II 

II!'- p'(ao, 0 0 0, an; 0 )II 

llf(N-ll- p(N-n(ao, 0 0 0, an; 0 )II 
In other words: We ask for an appropriate polynomial p that approxi

matesf and whose derivatives approximate the derivatives of f. This problern 
Ieads to a vector approximation problem, which can be formalized as 
follows: 
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Fig. 3.1. Wave behavior of the best 
approximation. 

51 

a 

Using the representations (3.1) and (3.2) this problern can be reformulated 
as 

max { I f( t) - I a/ I } 
rE[a, b] r~O 

min 
(ao ..... an)EIRn+l 

max {lf'(t)- I ia/-1 1} 
IE[a, b] i~l 

max {lt<N-l)(t)- I ~(i-l)···(i-N+2)a;t'-N+II} 
IE[a, b] r~N-1 

This is a vector optimization problern with N criteria. 
Next, we proceed to a problern of noise source detection ( e.g., see Ref. 

5, p. 45) which arises in location theory. lt turns out that the mathematical 
formulation of this problern is similar to that discussed in the previous 
example. 

Example 3.2. We consider an unknown place (x, y, z) E IR3 from which 
sound waves emanate (for instance due to an explosion) at an unknown 
time t. It is assumed that these waves have a constant velocity v. At n known 
places (x~> Y~> z1), ... , (xn, Yn, zn) E IR3 this noise is detected at the times 
t1 , • •• , tn (see Fig. 3.2). If the measurements were accurate, for each 

Fig. 3.2. Sound waves emanating from (x, y, z ). 

(x,y,z) 

(x3,y3,z3) 
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i E {1, ... , n} the equation 

v= 
[(x- xY + (y- YY + (z- zYf12 

t,- t 

would be satisfied, and in the case of n ~ 4 the four unknown variables 
could be obtained by solving these equations. But since these measurements 
are inaccurate, we have to find an appropriate point ( x, y, z) and a time t 
such that the expressions 

are minimized simultaneously. This Ieads to the vector approximation 
problern 

(in Ref. 5, p. 46, a nonlinear Ieast-squares problern is proposed for the 
solution of the considered location problem). 

Now we turn our attention to the numerical solution of differential 
equations with certain side conditions. We begin this discussion with an 
ordinary differential equation. 

Example 3.3. We consider the ordinary differential equation 

x 2y"- (x2 + 2x)y' + (x + 2)y = 0 forxE(l,2) 

with the initial conditions 

y(l) = 1 

and 

y'(l) = 2 

In order to find an approximate solution of this ODE satisfying the initial 
conditions, we determine an appropriate polynomial p of degree n with 

p(ao, ... , an; x) = z: a,xi for all x E [1,2] 
r=O 

where a0 , •.• , an E IR are suitable coefficients. For this polynomial p we 
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obtain 

x 2p"- (x2 + 2x)p' + (x + 2)p 
n 

= a0(x + 2) + (1- n)anxn+i + I (i- 2)[(i- l)a,- a,_ 1]x; 
i=2 

for each x E [1, 2] with 
n 

p(l) = I a, 
i=O 

and 
n 

p'(l) = I ia; 
i=l 

Consequently, for the determination of "optimal" coefficients we formulate 
the problern 

min 
(a0 , ... ,an )EIR!I+I 

1 max { I a0(x + 2) + (1 - n )anxn+i 
XE(J,2) 

which is also a vector approximation problem. 
Finally we discuss the numerical solution of a free boundary Stefan 

problem. The discussion is similar to that of the previous example. 

Example 3.4 (Ref. 6). We examine the following free boundary 
Stefan problem: 

Uxx(X, t)- U1(X, t) = 0, (x, t) E D(s) (3.3) 

ux(O, t) = g(t), 0 < t;;;;; T (3.4) 

u(s(t), t) = 0, 0 < t;;;;; T (3.5) 

ux(s(t), t) = -s(t), 0 < t;;;;; T (3.6) 

s(O) = 0 (3.7) 

where g E C[O, T] is a nonpositive function with g(O) < 0 and 

D(s) := {(x, t) E IR 2 IO < x < s(t), 0 < t;;;;; T} for s E C[O, T] 
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As an approxirnate solution of this problern one chooses the function 

I 

ü(x, t, a) = L a,v,(x, t) 
i=O 

with 

[ •/2] i! 
v (x t) = ' xi~2ktk 

I ' L. (. - 2k) I k I k~O l • • 

([i/2] denotes the largest integer nurnber less than or equal to i/2) and 

p 

s(t, b) = -g(O)t + z: b;t'+' 
1=1 

For each a E IR 1+ 1 ü satisfies the partial differential equation (3.3) and for 
each b E fRP s satisfies Eq. (3.7). If we plug ü and s into Eqs. (3.4), (3.5), 
and (3.6), we obtain the functions p 1 , p2 , p3 E C[O, T] with 

I 'I 

p 1(t, a, b) := ü,(O, t, a)- g(t) = .~, a, [(i _';)/2)! t('~ 1112 - g(t) 

'odd 

p2(t, a, b) := ü(S(t, b), t, a) = L a,v,(S(t, b), t) 
i=O 

and 

p3(t, a, b) := üx(s(t, b), t, a)+ i(t, b) 

I 

= L a;v;Js(t, b), t) + i(t, b) 
1=1 

If 11·11 denotes the Chebyshev norrn on C[O, T], then we forrnulate the 
following vector approxirnation problern for the approxirnate solution of 
the Stefan problern: 

(
llp,(·,a,b)ll) 

rni'l-+p+l IIP2( ·, a, b) II 
(a,b)d~ IIPk,a,b)ll 

3.3. Characterization of Pareto Optima by Scalarization 

In this section we investigate vector approxirnation problerns with N 
criteria and show which theoretical results known frorn a general vector 
optirnization theory can be used for a satisfactory solution ofthese problerns. 

For the investigations that follow we need the following assurnption. 
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Assumption 3.1. Let X be a nonempty subset of!Rn; letf1 , ••• ,fN: X~ 
C[ a, b] ( reallinear space of continuous functions on [ a, b] where -oo < a < 
b < oo) be given mappings; Iet z~> ... , zN E C[a, b] be given functions; and 
Iet ll·ll1, ... , 11·11 N denote arbitrary norms on C[ a, b ]. 

Under this assumption we investigate the following vector approxima
tion problem: 

(3.8) 

In the examples presented in Section 3.2 we discussed problems of the type 
(3.8). Minimal solutions of the problern (3.8) are to be understood in the 
sense of EP optimality (compare Chapter 1). For convenience we repeat 
this optimality notion in this special setting. 

Definition 3.1. Let Assumption 3.1 be satisfied, and Iet the vector 
approximation problern (3.8) be given. 

i. A vector x E X is called a Pareto optimal solution of the problern 
(3.8) if there is no x E X with 

ll/;(x)- z,ll; ~ llf.(x)- z,ll, f or all i E { 1, ... , N} 

where strict inequality holds for at least one i E {1, ... , N}. 
ii. A vector x E X is called a weakly Pareto optimal solution of the 

problern (3.8), if there is no x E X with 

IIJ;(x)- z,ll, < IIJ.(x)- z;ll, forall iE{l, ... ,N} 

lt is obvious that each Pareto optimal solution is also weakly Pareto 
optimal, but the converse statement is not true in general. Although we are 
mainly interested in Pareto optimal solutions, weakly Pareto optimal solu
tions are simpler to handle from a theoretical as well as numerical point 
of view. 

If each norm ll·ll1, ... , II· II N equals the Chebyshev norm [see (3.2) ], 
notice that the vector approximation problern (3.8) is equivalent to the 
semi-infinite vector optimization problern 
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subject to the constraints 
(x, A) E X X !RN 

-Al ~fl(x)(t)- z1(t) ~ A1 forall t E [a, b] 

Our first result concerns the solvability of the vector approximation 
problern (3.8). 

Theorem 3.1. Let Assumption 3.1 be satisfied, and Iet the vector 
approximation problern (3.8) be given. If the set X is closed and bounded, 
then there exists at least one Pareto optimal solution of the problern (3.8) 
(which is then also weakly Pareto optimal). 

Proof. By our assumptions on X, this set IS compact. Since the 
objective mapping is continuous, the image set 

is compact as weil. Then the set T has at least one minimal element ( e.g., 
see Ref. 4, p. 142), which means that there exists at least one Pareto optimal 
solution of the problern (3.8). 0 

Of course one can formulate an existence result under weaker assump
tions. But for our investigations it suffices to have this type of assumptions. 

For the numerical solution of the vector approximation problern (3.8) 
it is of interest to know how to scalarize this problem. There are several 
possibilities for scalarization. N otice that for this type of vector optimization 
problems the objective mapping is bounded from below by 0, i.e., 

O~IIJI(x)-ziii 1 forallxEX 

Basedon this special property it makes sense to use a scalarization technique 
for which this fact is an essential assumption. This scalarization will be 
done with the aid of ordinary approximation problems. 

Theorem 3.2. Let Assumption 3.1 be satisfied, and Iet the vector 
approximationproblern (3.8) be given. Moreover, Iet a 1 , ••• , aN be arbitrary 
positive real numbers. 
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i. A vector x E Xis a Pareto optimal solution ofthe vector approxima

tionproblern (3.8) if and only ifthere exist positive real numbers ß1, ... , ßN 

suchthat 

max {ß;(ll.,t;(x) - z; II; + a,)} < max {ß;(ll.,t;(x) - z; II; + a;)} 

for all x EX with ll.,t;(x)- z;jl; =F- ll.,t;(x)- z; IL for at least one i E {1, ... , N} 

(3.9) 

ii. A vector x E X is a weakly Pareto optimal solution of the vector 
approximationproblern (3.8) if and only if there exist positive real numbers 

ß1, ... , ßN suchthat 

max {ß;(ll.,t;(x)- z;ll. + a;)} ~ max {ß;(ll.,t;(x)- z,lli + a;)} 
l~l'5.N l~i-:s.;N 

for all x E X (3.10) 

Proof. i. Assurne that x E X is not a Pareto optimal solution of the 

problern (3.8). Then there exists some x E X with 

forall i E {1, ... , N} 

where strict inequality holds for at least one i E {1, ... , N}. Since the 
parameters a 1 , ••• , aN, ß 1, ... , ßN are positive, we obtain immediately 

max {ß;(IIJ,(x)- z;jl, + a.)} ~ max {ß;(IIJ.(x)- z,lli + a;)} 
l'S.i-s;N l'S.1'S.N 

So the inequality (3.9) is not satisfied by x. Next we take any Pareto optimal 
solution x E X Then we set 

forall iE{1, ... ,N} 

Consequently we have 

max {ß,(llf(x)- z.ll. + a,)} = 1 (3.11) 

and for each x EX with 11/.(x)- zdl. =F- ll.,t;(x)- z,ll; for at least one i E 
{1, ... , N} we get 

{ II ( ) II } { ll.,t;(x)- z;ll. + a;} 
~~~~ ß;( /; x - z, ; + a.) = ~~~~ IIJ.(x) _ z.ll; + a, > 1 (3.12) 

For the proof of the last inequality assume that 

{ 11/.(x)- z,ll. + a;} 
max ~ 1 

h•<>N 11/.(x)-z,ll,+a; 
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Then we conclude 

IIJ.(x)- z,ll.:;; IIJ.(x)- z.ll, forall i E {1, ... , N} 

which contradicts our assumption that x is a Pareto optimal solution of the 
vector approximationproblern (3.8). Consequently the equality (3.11) and 
the inequality (3.12) imply the inequality (3.9). 

ii. Although the proof of this part of this theorem is similar to the 
proof of part (i), we present it here for completeness. Let x E X be any 
vector that is not a weakly Pareto optimal solution of the problern (3.8). 
Then there exists some x E X with 

IIJ.(x)- z,ll. < IIJ.(x)- z,//, forall i E {1, ... , N} 

which implies 

max {ß,(ll};(x)- z,l/, + a,)} < max {ß,(ll};(x)- z.ll, + aJ} 
1<"-J5N t--s,~N 

But then x does not satisfy the inequality (3.10). Finally we consider an 
arbitrary weakly Pareto optimal solution x E X and we set 

1 
ß, := - > 0 

~J.(x)- z,/1; + a; 
forall iE{1, ... ,N} 

Then for each x E X we get 

max {ß,(IIJ.(x)- z.ll; + aJ} ~ 1 (3.13) 
I:s,::::; N 

because 

IIJ.(x)- z;/1, ~ IIJ.(x)- z,/1. for at least one i E {1, ... , N} 

Together with the inequality (3.11) and the inequality (3.13) we conclude 
that x satisfies the inequality (3.10). D 

Before going further we discuss the result of the preceding theorem. 
It is obvious that the characterization given in part (ii) of Theorem 3.2 is 
simpler than the one in part (i). In order to get some x E X satisfying the 
inequality (3.10) we have to solve the scalar optimization problern 

min max {ß,(IIJ.(x)- z;//, + a;)} (3.14) 
XEX l~i:".SN 
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Fig. 3.3. Geometrical meaning of Theorem 
3.2. 

which is equivalent to the problern 

minA 

,----
1 

I 
I r -------., 
I : 
I ; 

1/(32 : : 
I 
L ___ _:._ 

subject to the constraints 

(x, A) EX X IR 

ßt(Jift(x)- z~JJI + ai) ~ A 

59 

y, 

(3.15) 

The scalarization result of Theorem 3.2 has an interesting geometrical 
meaning in the image space !RN (see Fig. 3.3 in the case of N = 2; T denotes 
the image set ofthe objective mapping). Each weakly Pareto optimal solution 
ofthe vector approximationproblern (3.8) can be characterized as a minimal 
solution of an appropriate approximation problern with a weighted Cheby
shev norm in !RN. Notice that this approximation property gives us a complete 
characterization of the set of al1 weak Pareto optima where no assumptions 
on X and f 1, ... JN are required. 

From a numerical point of view it is much simpler to calculate weakly 
Pareto optimal solutions, whereas we are more interested in Pareto optimal 
solutions. In this case we can proceed as fo11ows: First we solve the scalar 
optimization problern (3.14) and (3.15), respectively, and then we check 
the Pareto optimality of a weakly Pareto optimal solution using the fo11owing 
result, which is based on an idea of Charnes and Cooper (Ref. 7). 

Theorem 3.3. Let Assumption 3.1 be satisfied, and Iet the vector 
approximationproblern (3.8) be given. Let some :XE X be arbitrarily chosen. 
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Each solution x E X of the scalar optimization problern 

N 

min l: IIJ:(x)- z,ll; 
1=1 

subject to the constraints 

XE X 

II!N(x)- zNIIN ~ llfN(x)- zNIIN 
is a Pareta optimal solution of the problern (3.8). 

(3.16) 

Proof. Let x EX be any solution of the problern (3.16), and assume 
that x is not Pareta optimal. Then there exists some x E X such that 

llf.(x)- z,ll,"" IIJ.(x)- z,ll, f or all i E { 1, ... , N} 

where strict inequality holds for at least one i E {1, ... , N}. Consequently 
x satisfies the constraints of the problern (3.16) and 

N N 
l: IIJ.(x)- z.ll, < l: IIJ:(x)- z,ll, 

1=1 i=l 

But this contradicts the assumption that x is a solution of the problern 
(3.16). So x is a Pareta optimal solution ofthe vector approximationproblern 
(3.8). 0 

If x E Xis any weakly Pareta optimal solution ofthe vector approxima
tion problern (3.8), then its Pareta optimality can be checked by solving 
the problern (3.16). If x is already Pareta optimal, then it is also a solution 
ofthe problern (3.16). But in this case the inequalities are equalities, which 
Ieads to numerical difficulties. 

Finally we turn our attention to the vector approximation problern 
(3.8) where the mappings / 1 , ••• JN are assumed to be linear. 

Lemma 3.1. Let Assumption 3.1 be satisfied, and, in addition, Iet X 
be a convex set and Iet / 1 , ••• , f N be linear mappings. Then the set 

T+ := {( :•) E RN I thm e>i''' 'omo x E X with } (3.17) 

YN IIJ.(x)- z,ll, ~ y; for all i E {1, ... , N} 

is convex. 
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Proof. First we show that the objective mapping g: X ~!RN with 

for all x EX 

is convex (in the componentwise sense). For arbitrary elements X~o x2 E X 
and any A E [0, 1] we get for each i E {1, ... , N} 

llf.(Ax1 + (1- A)x2)- z,ll. = IIA.f.(xt) + (1- A)f.(x2)- z,ll. 

~ AIINxt)- z,ll. + (1- A)ll/;(x2)- z,ll; 

Since g is a convex mapping, the set T+ = g(X) + IRZ' is a convex set (e.g., 
see Ref. 4, p. 41). 0 

Based on the results of Lemma 3.1 we can also scalarize linear vector 
approximation problems by using the weighted sum of the objectives. 

Theorem 3.4. Let Assumption 3.1 be satisfied, and, in addition, Iet X 
be a convex set and Iet f~o ... JN be linear mappings. A vector x E X is a 
weakly Pareta optimal solution of the vector approximation problern (3.8) 
if and only if there exist nonnegative real numbers ß 1, ... , ßN where at 
least one of them is positive such that 

N N 

I ßillf.(x)- z,ll. ~ I ß.IIJ.(x)- z,ll. for all x EX (3.18) 
r=l r=l 

Proof. Let x E X not be a weakly Pareta optimal solution of the 
problern (3.8). Then there exists some x E X with 

llf.(x)- z,ll. < IIJ.(x)- z;ll, for all i E {1, ... , N} 

which implies 
N N 

L ß,llf.(x)- z;ll. < L ßdlf.(x)- z,ll, 
1=1 1=1 

But this means that x, does not satisfy the inequality (3.18). Finally we 
assume that x E Xis a weakly Pareta optimal solution ofthe vector approxi
mationproblern (3.8). Then we have C n T+ = 0 where 

c '~ {(:Je n>N Ir,< IIJ.(>J-z.ll. fo'"ll i E {I, ... , N}} 

and T+ is defined as in (3.17). The sets C and T+ (by Lemma 3.1) are 
convex and C has a nonempty interior. By a separation theorem there exist 
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real numbers ß~. ... , ßN with (ß~. ... , ßN) >= 0 and 
N N 

I ß,c, ~ I ß,t, for all c E C and all t E T+ (3.19) 
r=l r=l 

It is easy to see that each ß; is nonnegative, and since 

belongs to the boundary of the set C, we conclude from (3.19) 

N N 

I ß;ll/.(x)- z,ll. ~ I ß.ll/.(x)- z,ll, for all x EX 0 
1=1 •=1 

The result of Theorem 3.4 gives a complete characterization of the set 
of weakly Pareta optimal solutions of the linear vector approximation 
problern (3.8). Although a similar result can be formulated for the Pareta 
optimality notion, a complete characterization cannot be given. A vector 
.XE X satisfying the inequality (3.18) can be obtained by solving the scalar 
optimization problern 

N 

min I ß,ll.t;(x)- z,ll; (3.20) 
XEX 1=1 

3.4. Numerical Results Based on Scalarization 

In the previous section we studied several parametric optimization 
problems appropriate for the solution of the special vector approximation 
problern (3.8). Other approaches are certainly possible. We restricted our
selves mainly to the two types (3.14) [and (3.15), respectively] and (3.20) 
of parametric optimization problems. In this section we show how to apply 
these results to two concrete vector optimization problems presented at the 
beginning of this chapter. 

Example 3.5. We reconsider Example 3.1 under special assumptions. 
The interval [a, b] is taken as [1/10, 1], and the functionf E C[a, b] which 
is to be approximated is chosen as 

f(t) = Jt for all t E [1/10, 1] 

This function is approximated by a polynomial p of degree n := 5, i.e., 

p(ao, a1, a2, a3, a4, a5; t) = a0 + a1t + a2t2 + a3t3 + a4t4 + a5t5 

for all t E IR 



www.manaraa.com

Applications in Approximation Theory 63 

We ask for appropriate coefficients a0 , a 1 , ••• , a5 E IR of the polynomial p 
suchthat p( a0 , ••• , a5 ; ·) approximates f, p'( a0 , • •• , a5 ; ·) approximates /', 
and p"(a0 ,. • •• , a5 ; ·) approximates f" simultaneously (i.e., N := 3). Con
sequently the vector approximation problern reads as follows: 

( 
IIJ-p(ao, ... ,as;·)ll) 

min II!'- p'(ao, ... , as; · )II 
(ao, ... ,a,)ER6 IIJ" _ "( . . . ) II p ao, ... ,as, 

(3.21) 

where II · II denotes the Chebyshev norm on [ 1/10, 1]. If we restriet the 
coefficients a0 , ••• , a5 for instance by lower and upper bounds, the vector 
approximationproblern which is modified in this way has at least one Pareto 
optimal solution by Theorem 3.1. For the determination of weakly Pareto 
optimal solutions ofthe problern (3.21) we apply Theorem 3.2, (ii), although 
we could also use the result ofTheorem 3.4 since the polynomials considered 
are linear mappings. The positive real numbers a 1 , a 2 , a 3 are chosen as 
a 1 = a 2 = a 3 = 1. Then the scalar optimization problern (3.15) is given by: 

min A 

subject to the constraints 

( a0 , ••• , a5 , A) E IR 7 

ß1CIIf- p(ao, ... , as; · )II + 1) ~ A 

ß2CIIf'- p'(ao, ... , as; · )II + 1) ~ A 

ßJ(IIf"- p"(ao, ... , as; · )II + 1) ~ A 

This problern is equivalent to the problern 

min A 

subject to the constraints 

(a0 , .•. ,a5;A)EIR7 

A r. 2 3 4 s A -- + 1 ~ -v t- a0 - a 1t- a2 t - a3 t - a4 t - a5 t ~-- 1 
ßl ßl 

for all t E [1/10, 1] 

A 1 2 3 4 A --+ 1 :S-- a - 2a t- 3a t - 4a t - 5a t :S-- 1 ß2 - 2Jt I 2 3 4 5 - ß2 

A 
--+1:S 

ß3 -

for all t E [1/10, 1] 

1 2 3 A 
- r.3 - 2a2 - 6a3 t - 12a4 t - 20a5 t ~-- 1 

4-v t ß3 

for all t E [1/10, 1] 
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This is a semi-infinite linear optimization problem. For its numerical solution 
we discretize the interval [1/10, I] by choosing the points 0.1, 0.2, 0.3, 0.4, 
0.5, 0.6, 0.7, 0.8, 0.9, 1.0. Then this semi-infinite linear optimization problern 
reduces to a linear program with seven variables and 60 inequality con
straints. 

Tables 3.1 and 3.2 present optimal coefficients a0 , ••• , a5 oftbis linear 
pro gram, which are obtained by applying a simplex algorithm on a VAX 
11/780 computer. The numerical results show in an impressive way how 
the optimal coefficients a0 , ••• , a5 vary, if we vary the weights ß1 , ß2 , ß3 

of the objective functions. These weights describe which objective function 
is more or less important for the decision maker. 

Notice that the minimal value A given in Table 3.1 and Table 3.2 does 
not necessarily represent the maximal error between the approximated 

Table 3.1. Numerical Results for Example 3.5 

Weights 

ß, =I ß, =I ßt =I 
ß, = 0.001 ß, = I ß, = I 
ß3 = 0.001 ß3 = 0.001 ß3 =I 

Optimal Go = 0.139401 G0 = 0.140445 G0 = 0.199158 
coefficients G 1 = 2.085858 G 1 = 2.285486 G 1 = 3.185682 

G2 = -3.596822 G2 = -4.512108 G 2 = -6.381995 
G3 = 4.960257 G3 = 6.731702 G 3 = 11.005767 
G4 = -3.697888 G4 = -5.215443 G4 = -9.162240 
G5 = 1.109586 G5 = 1.584318 G5 = 2.856455 

Minimal 
value A = 1.000392 A = 1.016193 A = 1.702826 

Values of 
the optimal 
polynomial p Values 
at of f 

I,= 0.1 0.3166 0.3301 0.4640 0.3162 
I,= 0.2 0.4468 0.4631 0.6553 0.4472 
13 = 0.3 0.5481 0.5634 0.8104 0.5477 
14 = 0.4 0.6324 0.6462 0.9514 0.6325 
15 = 0.5 0.7067 0.7202 1.0888 0.7071 
16 = 0.6 0.7745 0.7887 1.2250 0.7746 
17 = 0.7 0.8371 0.8524 1.3572 0.8367 
lg = 0.8 0.8947 0.9106 1.4813 0.8944 
19 = 0.9 0.9483 0.9637 1.5954 0.9487 
110 = 1.0 1.0004 1.0144 1.7028 1.0000 
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Table 3.2. Numerical Results for Example 3.5 

Weights 

ß1 =I ß1 =I ß1 =I 
ßz =I ßz = 0.5 ß 2 = 0.5 
ßJ = 0.5 ßJ = 1 ßJ = 0.25 

Optimal a0 = 0.073211 a0 = -0.745978 a0 = 0.134729 
coefficients a 1 = 2.534545 a 1 = 4.130817 a 1 = 2.144959 

a2 = -5.846034 a2 = -6.381995 a 2 = -3.858089 
a3 = 9.614893 a3 = 11.005767 a3 = 5.4 79690 
a4 = -7.896295 a4 = -9.162240 a4 = -4.172805 
a5 = 2.479643 a5 = 2.856455 a5 = 1.272024 

Minimal 
value A = 1.042300 A = 1.702826 A = 1.000509 

Values of 
the optimal 
polynomial p 

at 
/1 = 0.1 0.2771 -0.3866 0.3157 
12 = 0.2 0.4114 -0.1008 0.4470 
/3 = 0.3 0.5091 0.1488 0.5482 
14 = 0.4 0.5903 0.3843 0.6323 
15 = 0.5 0.6648 0.6163 0.7066 
/6 = 0.6 0.7356 0.8469 0.7745 
17 = 0.7 0.8016 1.0736 0.8372 
lg = 0.8 0.8604 1.2923 0.8948 
19 = 0.9 0.9117 1.5009 0.9482 
/10 = 1.0 0.9600 1.7028 1.0005 

function and the polynomial. This error is given by 

A A 
P. := -- <:X· = -- 1 
I ßl I ßl fori=1,2,3 

For instance, in the case of ßi = ß 2 = 1 and ß 3 = 0.5 we have 

PI = P2 = 0.042300 

and 

p3 = 1.082300 

For the weights ßi = ß 2 = ß 3 = 1 we get 

PI = P2 = P3 = 0.702826 

65 

Values 
of f 

0.3162 
0.4472 
0.5477 
0.6325 
0.7071 
0.7746 
0.8367 
0.8944 
0.9487 
1.0000 
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1-0r---------------------------------------------~ 
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Fig. 3.4. Approximation of f" for ß1 = ß2 = ß3 = I. 
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Fig. 3.5. Approximation of f" for ß1 = 1 and ß2 = ß3 = 0.001. 
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Figure 3.4 illustrates the approximation of f" by the second derivative 
ofthe polynomial in the case of ß1 = ß2 = ß3 = 1. Figure 3.5 gives a similar 
illustration, if we choose the weights ß1 = 1 and ß2 = ß3 = 0.001. Although 
the approximation in Fig. 3.5 is quite good in the interior of the interval 
[1/10, 1], it is not acceptable at t = 1/10. This result is not surprising since 
we concentrate on the approximation of f 

Example 3.6. Now we investigate the vector approximationproblern 
given in Example 3.3. The mentioned ODE can be solved explicitly, and 
together with the initial conditions we obtain the exact solution y: [1, 2] ~IR 
with 

y(x) = xex-l for all x E [1, 2] 

For the solution of the vector approximation problern developed in 
Example 3.3 we solve the scalarized problern (3.15) with the coefficients 
a1 = a2 = a3 = ß1 = ß2 = ßJ = 1. In this case the optimization problern 
(3.15) is a semi-infinite linear optimization problem. For its numerical 
solution we discretize the interval [1, 2] by choosing the points 1.0, 1.1, 1.2, 
1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0. Optimal solutions of this linear program 
are presented in Table 3.3. The given optimal coefficients are the coefficients 
of the polynomial p of degree n with 

for all x E [1, 2] 

which approximates the exact solution y. The polynomial p of degree 4 
together with the exact solution y are illustrated in Fig. 3.6. From Table 
3.3 one can see that the given polynomial of degree 6 is already a good 
approximation of the exact solution y. 

3.5. Alternation Theorems for Chebyshev Vector Approximation Problems 

In this section we investigate again the vector approximation problern 
(3.8), where the norms ll·ll~o ... , Hl N now are equal to the Chebyshev 
norm on C[ a, b]. We apply the generalized multiplier rule of Lagrange to 
this problem. This Ieads to optimality conditions which are also called 
alternation conditions in approximation theory. 

First, we summarize the necessary assumptions. 
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Table 3.3. Numerical Results for Example 3.6 

Optimal 
coefficients 

Minimal 
value 

Values of 
the optimal 
polynomial p 
at 

x, = 1.0 
x2 = 1.1 
x3 = 1.2 
x. = 1.3 
x, = 1.4 
x6 = 1.5 
x7 = 1.6 
Xg = 1.7 
X9 = 1.8 
X10 = 1.9 
x,, = 2.0 

Degree of the polynomial 

n=4 

a0 = 0.435802 
a 1 = -0.877926 
a2 = 2.198572 
a 3 = -0.983801 
a4 = 0.331907 

A = 1.104555 

1.1046 
1.3069 
1.5365 
1.7966 
2.0914 
2.4257 
2.8050 
3.2359 
3.7256 
4.2821 
4.9143 

n=6 

a0 = 0.036691 
a 1 = 0.191297 
a 2 = 0.727513 
a 3 = -0.209635 
a4 = 0.309305 
a5 = -0.072863 
a 6 = 0.018196 

A = 1.000503 

1.0005 
1.2161 
1.4660 
1.7550 
2.0885 
2.4728 
2.9148 
3.4225 
4.0046 
4.6714 
5.4340 

Values 
of y 

1.0000 
1.2157 
1.4657 
1.7548 
2.0886 
2.4731 
2.9154 
3.4234 
4.0060 
4.6732 
5.4366 

Assumption 3.2. Let X be an open superset of a nonempty subset X 
of!R"; letf,, ... .fN: X-? C[a, b] (real linear space ofcontinuous functions 
on [ a, b ], where -oo < a < b < oo) be given Frechet differentiable map
pings; Iet z1 , ... , zN E C[a, b] be given functions; and Iet 11·11 denote the 
Chebyshev norm on C[a, b] [see (3.2)]. 

Under Assumption 3.2 we consider the following Chebyshev vector 
approximation problem: 

(3.22) 

Notice that this vector approximation problern is equivalent to the semi-
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X 

Fig. 3.6. Approximation of y by a polynomial of degree 4. 

infinite vector optimization problern 

subject to the constraints 

(x, A) EX X !RN 

- A1 ~f1 (x)(t)- z1(t) ~ A1 for all t E [a, b] 

for all t E [a, b] 

69 

(3.23) 

The following alternation theorem presents necessary conditions for 
weakly Pareto optimal solutions of the problern (3.22). 

Theorem 3.5. Let Assumption 3.2 be satisfied. Let i E X be a weakly 
Pareto optimal solution of problern (3.22) and for each k E {1, ... , N} Iet 
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the Frechet derivative of A at x be given by 

n 

fk(x)(x) = I x,vk; for all x EX (3.24) 
1=1 

with certain functions vk, E C[a, b]. Then there exist nonnegative numbers 
T1 , ••• , TN, where at least one Tk is nonzero, with the following property: 

For each k E { 1, ... , N} with Tk > 0 there exist points tkl, ... , tkp, E 
Ek(x) with 

1 ~ Pk ~ dim span{vk,, ... , Vkn, e,ik(x)- zd ~ n + 2 

(e = 1 on [a, b]), 

Ek(x) := {t E [a, b]il(fk(x)- zk)(t)l = llik(x)- zkll} 
and there are real numbers Ak 1 , ••• , Akr• such that 

(3.25) 

n N P, 

I (x1 -X1 ) I Tk I Ak,Vk1 (tk,)~O for all x EX (3.26) 
J=l k=l •=I 

and 
Ak, ?" 0 for some i E {1, ... , pd =:::} [fk(x)- zd(tk;) 

= llfk(x) - zk II sgn(Ak,) (3.27) 

Proof. Let x E X be a weakly Pareto optimal solution of problern 
(3.22). Then for Ä E !RN with 

for all k E {1, ... , N} 

(x, Ä) E X x !RN is a weakly Pareto optimal solution of problern (3.23). By 
a generalized multiplier rule of Lagrange (e.g., see Ref. 4, Theorem 7.4) 
there exist nonnegative numbers T1 , ••• , TN where at least one Tk is 
nonzero and certain continuous linear functionals uk, wk E C[a, b]*, 
k E {1, ... , N}, with 

(3.28) 

for all k E {1, ... , N} and all g E C[a, b], where g(t) ~ 0 foreachtE [a, b] 

forall kE{1, ... ,N} (3.29) 

N 

I (uk- wk)[fk(x)(x ~ x)] ~ 0 for all x EX (3.30) 
k=l 
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and 

wk(-fk(x) + zk- Äke) = 0 

for all k E {1, ... , N} (3.31) 

If Tk = 0 for some k E {1, ... , N}, then the conditions (3.28) and (3.29) 

imply 

Nothing needs to be shown in this case. 
N ow, assume that Tk > 0 for some k E { 1, ... , N} and define continuous 

linear functionals ük = (1/Tduk and wk = (1/Tk)wk. By a representation 

theorem for linear functionals on finite-dimensional subspaces of C[ a, b] 

(see Ref. 3, Section IV, 2.3-2.4) there exist qk points tti E [a, b] and real 

numbers At,~ 0 for i E {1, ... , qd with 

for every g E C[a, b] 

In a similar way there exist rk points tki E [a, b] and real numbers Aki ~ 0 

for i E {1, ... , rd.with 

rk 

wk(g) = I Akig(t"J for every g E C[a, b] 
j~l 

If we define 

f or all i E { 1, ... , qk} 

and 

for all i E {1, ... , rk} 

and if we set Pk := qk + rk. then Eq. (3.29) yields 

1 = ük(e) + wk(e) 

qk rk 

= I Aki +I (-Akj) 
i~l j~l 

which implies that the equality (3.25) is satisfied. For an arbitrary x E X 
we get (with (3.24)) 

" fk(x)(x- x) = I (xj- .X1)vkj 
j~l 
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From inequality (3030) we then obtain 

N 

o s: I Tk(ük- wk)[f~(x)(x- x)] 
k~l 

N pk 

= I Tk I AkJ~(x)(x- x)(tk,) 
k~l r~l 

N p/.. n 

= I Tk I Ak, I (x}- xJvkj(tk,) 
k~l r~l .1~1 

which Ieads to the inequality (3026)0 Equations (3031) can be written as 

qk 

0 = I Ak.[(fk(x)- zk)(tk,)- Äk] 
1=1 

qk 

= I Ak,[(fk(x)- zk)(tk,) -llfk(x)- zkiiJ 
1=1 

and 

'k 

0 = I Ad- (_h(x)- zk)(tk,) -llfk(x)- zkiiJ 
1=1+qJ,. 

If Ak, '/'- 0 for some i E {1, 0 0 0 ,pd, we conclude 

[_h(x)- zk](tk,) = llfk(X)- zkll sgn(Ak,) 

Finally, notice that the analogous application of a known result from 
optimization ( eogo, compare Ref. 3, Theorem 1.502) Ieads to 

0 

Theorem 305 gives necessary optimality conditions for the Chebyshev 
vector approximation problern (3022)0 These conditions are also sufficient 
optimality conditions, if a so-called representation condition is satisfiedo 

Theorem 3.6. Let Assumption 302 be satisfiedo Moreover, Iet some 
x E X be given, and for each k E {1, 0 0 0, N} Iet the Frechet derivative of 
fk at x be given by (3024)0 Assurne that there exist nonnegative numbers 
T1, 0 0 0 , TN where at least one Tk is nonzero with the following property: 
For each k E {1, 0 0 0 , N} with Tk > 0 there exist points tkl, 0 0 0 , tkPk E Ek(x) 
with 

1 ~ Pk ~ dim span{vkJ, 0 0 0, v'"' e,f~x)- zd ~ n + 2 

( e = 1 on [ a, b]) 

Ek(x) := {t E [a, bJIIC.h(x)- zk)(t)l = llfk(x)- zkll} 
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and there are real numbers Akt, ... , AkPk such that the conditions (3.25), 
(3.26), and (3.27) are satisfied. Furthermore, Iet / 1 , ••• .!N satisfy the rep
resentation condition; i.e., for every x E X there exist positive functions 
I/J1(x, x), ... , 1/JN(x, x) E C[a, b] and some x EX with 

Efk(x)- A(x)](t) = 1/!k(x, x)(t) · [f~(x)(x- x)](t) 

for all t E [a, b] and all k E {1, ... , N} 

(3.32) 

Then x is a weakly Pareto optimal solution of the problern (3.22). 

The proof of this theorem can be found in Ref. 8. The representation 
condition implies that the problern considered exhibits a certain generalized 
notion of convexity. In this case the generalized multiplier rule is also a 
sufficient condition for optimality. 

The representation condition in the previous theorem is satisfied for 
rational approximating families: Let functions Pk; E C[ a, b ], k E {1, ... , N} 
and i E {1, ... , n}, be given and define 

fk(x)(t) = ~;::,, x,pk.(t) 
L~nk+l X;pk;(l) 

for all x E IR" and all t E [a, b] 

for some nk E {1, ... , n - 1}, with k E {1, ... , N}, and 

X:= { x E IR" I ;~t.+t x,pk;(t) > 0 for all t E [a, b]} 
An easy computation shows that equality (3.32) holds with 

1/!k(x, x)(t) = I~~nk+l ~·Pk;(t) for all t E [a, b] 
Ii~nk+l X;pk,(t) 

where x = (x~o ... , Xn) and x = (x~o ... , xn). 
In the real-valued case the representation condition mentioned in 

Theorem 3.6 was introduced by Krabs (Ref. 9). For further discussion of 
these types of condition for the case N = 1 see Ref. 9. 

Finally, we consider the special case of a linear Chebyshev vector 
approximation problem. In addition to Assumption 3.2 we assume that for 
each k E { 1, ... , N} linearly independent functions vk ~o ... , vkn E C [ a, b] 
are given such that 

n 

A(x) = I X;Vk; for each x E IR" 
i=l 

In this special setting inequality (3.26) is equivalent to 

N Pk 
I Tk I Ak;Vkj(tk;) = 0 for all jE {1, ... , n} 
k~l i~l 
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Moreover, one can show that for each k E {1, 0 0 0, N} the inequality Pk;:;:: 
n + 1 holdso 

Example 3.7. We investigate the following linear Chebyshev vector 
approximation problem: 

0 ( llxv- sinhll) mm 
xcu;J llxv'- coshll 

(3033) 

We assume that [a, b] = [0, 2] and v denotes the identity on [0, 2] (v' = 1)0 
Then the optimality conditions (3025), (3026), and (3027) take on the form: 

where 

IA.,,I + IA.d = 1 

IA.2,1 + IA.nl = 1 

A.11 ~ 0 ==> xt11- sinh t11 = llxv- sinhll sgn(A.ll) 

A.,2 ~ 0 ==> xt,2- sinh t,2 = llxv- sinhll sgn(A,2) 

A.21 ~ 0 ==> x- cosh t21 = llxv'- coshll sgn(A.21) 

A. 22 ~ 0 ==> x- cosh t22 = llxv'- coshll sgn(A. 22 ) 

t11, t12 E E,(x) 

t21, t22 E E2(x) 

Under the assumption that r 1 and r2 are positive x E IR satisfies the above 
conditions if and only if x E [x,, x2], where x, = 1.600233 and x2 = 203810980 
Each x E [x1 , x 2] is a weakly Pareto optimal solution ofthe linear Chebyshev 
vector approximation problern (3033)0 
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Welfare Economics and the Vector Maximum Problem 

N. SCHULZ1 

4.1. Introduction 

lt is probably weil known to everyone working in the field of multi
criteria optimization that the roots of this field can easily be traced back to 
welfare economics, more precisely to the contributions of Vilfredo Pareto 
(Ref. 1). As a matter of fact, Stadler's survey on multicriteria optimization 
(Ref. 2) gives a fairly detailed review of the historical development of 
multicriteria optimization in the context ofwelfare theory. There is obviously 
no point in duplicating his effort. There are also many standard textbooks 
on welfare economics (e.g., Refs. 3-6). Thesetextsare written for econom
ists, but just translating and ·summarizing them for noneconomists could 
certainly not be adequate in this volume. 

This chapter is therefore not intended to be an historical review of the 
roots of multicriteria optimization in welfare economics, nor is it intended 
to provide a general survey on welfare economics. lts emphasis is rather 
on the relationship between the mathematics of the vector maximum prob
lern and structural aspects of economic phenomena. Loosely speaking, the 
attempt to analyze and evaluate the performance of market processes has 
led to the formulation of a vector maximum problem. Under certain condi
tions this vector maximum problern can be decomposed into a set of 
"independent" scalar-valued maximum problems. This possibility in itself 
and the discussion of the conditions employed for deriving the decomposi
tion result have led to important insights into the possibilities and Iimitations 
of market outcomes. lt is hoped that this chapter will help in understanding 
the mutual influence of mathematics and economics on each other in general 
and the roJe of the vector maximum problern in organizing ideas on welfare 
economics in particular. 

1 Department of Economic and Social Science, University of Dortmund, D-4600 Dortmund, 
Federal Republic of Germany. 
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We briefiy review the organization of this chapter. In Section 4.2 the 
most standard formal model of an economy is presented. In Section 4.2.1 
the so-called fundamer,tal theorems of welfare economics are stated and 
proved. These amöunt to the decomposition result alluded to above. As the 
basic idea for the proofs of almost all results reported later is contained in 
this section, its presentation is fairly detailed, while results in later sections 
are not proved. Sections 4.2.2 and 4.2.3 present generalizations to infinite 
dimensions. Sections 4.3-4.5 discuss the effect of deviating from assumptions 
and structural elements of the model in Section 4.2.1 on the decomposition 
result and its economic interpretation. Section 4.6 provides a short glimpse 
of certain aspects of the scalarization of the vector maximum problern and 
contains some hints on the theory of social choice. An effort is made to 
present the material in a form accessible to noneconomists. 

4.2. The Arrow-Debreu Model of an Economy 

In this section the basic ingredients ofthe Arrow-Debreu model (ADM) 
are presented in such a way as to provide a suitable framework for the 
following discussion ( e.g., Refs. 7 -9). Therefore the most general version 
of this model is not given here; rather a version is introduced that helps 
the reader to a clear understanding of the concepts involved. Further 
generalizations will be introduced whenever the analysis of certain questions 
arising in welfare economics demands it. 

Following Debreu (Ref. 7) the most basic entity of the ADM is a 
commodity, which is characterized by its physical properties and the date 
and the Jocation at which it will be available. It may be helpful for some 
readers to start by assuming that there is only one such date and Jocation, 
such that a commodity is described by its physical characteristics only. We 
assume (in this section) that there is a finite number, L, of commodities 
available in the economy. 

In addition there will be two classes of agents, the class of producers 
and the dass of consumers. Producers are characterized by a production set 
Y c IRL, which describes the technical possibilities of a producer. A typical 
element y = ( Y~> y2 , ••• , YL) E Y is tobe interpreted as a feasible production 
plan: If a component of y is negative, it describes the quantity of the 
respective commodity used as input into the production process; if it is 
positive, it describes the quantity of the respective commodity produced as 
output. Hence a production plan specifies all inputs and outputs. The 
production set Y collects all production plans that the producer finds 
technically feasible. We should note here that the technical feasibility of a 
production plan is completely separated from the question of availability 
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of commodities planned as inputs. There will be a finite number, N, of 

producers, indexed by j = 1, ... , N. Hence, Y refers to the set ofproduction 

plans that producer j can carry out if the inputs needed are available. 

Consurners are characterized by a consurnption set X c IRLand a utility 
function u: X~ IR. A typical element x = (x~. x2 , ••• , xL) EX is to be 

interpreted as a feasible consurnption plan, where the lth component of x 
describes the quantity of commodity l to be consumed. X collects all 

consumptions plans that a consumer finds physically feasible for himself. 

Here again feasibility is not to be confused with the availability of com

modities or with the financial restrictions a consumer may be confronted 

with. A utility function associates with each x E X an index of well-being. 

It should be noted here that for most of the following discussion a weaker 

concept than that of a utility function could be used. All that is needed is 

a preference relation on X (cf. Debreu Ref. 7, pp. 54). In essence, weshall 

only make use of the ordering on X induced by u. For a lengthy discussion 

of the relationship between these concepts see Debreu (Ref. 7, pp. 54) for 

example, or Stadler (Ref. 2). Nevertheless we shall use the concept of a 

utility function for expository reasons and without loss of generality. There 

will be M consumers, indexed by i = 1, ... , M. Hence the ith consumer's 

consumption set and utility function are denoted by X; and u;. 
Finally w E IRL describes the resources available in the economy before 

any production plans are carried out. Hence w1 gives the quantity of 

commodity 1 initially available. 
A Iist of consumption plans and production plans a = ((x;), (y1 )) 

i = 1, ... , M, j = 1, ... , N with x, EX, and }j E Y, is called a state of an 

economy, as it describes precisely all activities of all agents, if the respective 

plans are carried out. Hence, 

a E (2 X,) X (~1 Y,) c JRL(M+N) 

Such a set of plans can be carried out-we say such a state is attainable 
(feasible)-if the consumption plans are compatible with the quantities 

produced and/ or available as resources: 

M N 

I X,= I yj + w (4.1) 
1=1 j=l 

The set of attainable states is denoted by A. 
The question now arises as to what is a "good" attainable state and 

what state is selected by the institutions of the economy. We shall address 

both of its parts, starting with its first part. Most of this paperwill be devoted 

to a discussion of the relationship between the proposed solution of both 
types of questions. 
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The standard criterion of economists of a "good" state is spelled out 
in the following definition. 

Definition 4.1. An attainable state a E A is a Pareto Optimum, if there 
is no a E A suchthat u,(x,) ~ u,(x,) 't/i E {1, ... , M} and u.(x,) > u,(x,) for 
some i E {1, ... , M}. 

Note that according to this definition the well-being of consumers is 
the exclusive yardstick for the quality of a state. The roJe of production is 
restricted to a means to enhance the well-being of consumers. A person, in 
this paradigm, may act as a producer as weil as a consumer. As a producer 
he is a pure technocrat embodying some technical knowhow. 

A state a is thus optimal if there is no alternative attainable state a 
such that-given the choice between a and a-all consumers could unani
mously agree upon a. Obviously, this is not a particularly strong criterion: 
in general, there will be an infinite number of Pareto optima, each of which 
is distinguished-among other things-by a specific distribution of com
modities among consumers. As consumers will in general prefer distributions 
favorable to themselves, those being favored by one specific distribution 
will not agree upon another distribution tll.at is less favorable to them. And 
hence such a pair of distributions cannot be ordered by the Pareto criterion, 
as it requires unanimous approval. 

lt is obvious that a Pareto optimum is a solution to a vector maximiza
tion problem: if U: IR L( M + N 1 ~ IRM is the mapping, the ith component of 
which is consumer i's utility function, extended from X, to the embedding 
of X, in IRL(•-ll x X, x IRL(M-•+Nl' a Pareto optimum is a solution to 

max U(a) s.t. a E A 

The discussion of the set of solutions to this fundamental vector maximiza
tion problem-the set of Pareto optima-has occupied quite a number of 
economists starting from Pareto and has provided many insights into the 
structure of economic allocation mechanisms, some of which will be 
reviewed below. Most of these insights are intimately connected to the 
question as to whether allocations (states) realized by market institutions 
are indeed Pareto optima and as to whether a specific Pareto optimum can 
be obtained by the workings of a market economy. 

To be able to enquire into such problems, it is obviously necessary to 
develop some formal model using the same ingredients as the concept of 
Pareto optimality and capturing essential features ofthe market mechanism. 
Despite all kinds of criticism that could be raised, there can hardly be any 
doubt that the ADM has met this requirement with unprecedented success. 
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lts structure is admirably simple. In addition to the concepts ( }j, X" u;) 
introduced above, all that is needed is a specification of ownership of 
resources and production units. Let w, E IRL denote consumer i's initial 
endowment; i.e., the part of the economy's resources he owns. Moreover 
Iet 6,; be the share of production unit j that consumer i owns. Now, if 
p E IRL is a vector of prices (a price system) of the corresponding com
modities, py1 is the profit that can be earned by carrying out production 
plan Yi· Hence, if (y1 ),j E {1, ... , N} are the production plans carried out 
in the economy, 

N 

pw; + L 6,;PYi 
;~l 

describes the financial resources of consumer i. He will be able to purchase 
commodities x, E IRL, if px, ~ pw, + L: 6yPY;· Given prices and financial 
resources it is assumed that a consumer will choose x, such as to maximize 
bis utility u,. Hence, he solves 

max u;(x,) ( 4.2) 
x, 

On the production side producers are assumed to choose a production plan 
which maximizes profits given the technological possibilities Y, : 

maxpy1 s.t. y1 E Y, (4.3) 
y, 

lt is then suggested that the market forces will influence the prices in such 
a way as to make these choices compatible with each other. These choices 
taken tagether form a state of the economy that is called an equilibrium 
allocation. Formally we have the following definition. 

Definition 4.2. Astate (an allocation) t1 is called an equilibrium alloca
tion with respect top E IRL if a E A and V i = 1, ... , Mx, solves (4.2) and 
V j = 1, ... , N y1 solves (4.3). 

A number of comments may be called for. Given that we have made 
no assumptions so far as to the properties of the basic ingredients involved, 
there is, of course, no guarantee that such an equilibrium allocation with 
respect to some p exists at all. Indeed, a !arge part of the mathematical 
effort that has been made in general equilibrium theory has been devoted 
to the provision of existence proofs allowing for as unrestrictive assumptions 
as possible. A discussion of this work would, however, be beyond the scope 
of this paper (see, e.g., Refs. 7-9). 
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The relationship between Pareta optima and equihbnum allocauons 
will be the major subject of the following discussion. Note that if there is 
a close relationship-and we shall see that this is so under certain cir
cumstances-this is rather astounding, as an equilibrium allocation is the 
outcome of quite a number of independent decisions of consumers and 
producers while the definition of Pareto optima suggests the necessity of 
the joint decision of a society. lt is thus not surprising that the analysis of 
this relationship has played a substantial roJe in the discussion of whether 
and how decisions concerning the welfare of an economy as a whole can 
be decentralized ( Refs. 10-13). 

The most essential theorems-the so-called fundamental theorems of 
welfare economics-on this subject provide conditions under which an 
equilibrium allocation is a Pareto optimum, and another set of conditions 
under which a specific Pareto optimum is an equilibrium allocation for 
some suitable distribution of initial endowments w, and shares e,r These 
results contain several insights. They give a precise meaning to the idea 
that a !arge number of individualistic decisions does not necessarily Iead 
to a chaotic situation. On the contrary, the pursuit of egotistic motives Ieads, 
under certain conditions, to a state that could not unanimously be improved 
upon and that a society as a whole may regard as a good one. This is an 
old idea in economics dating back at least to Adam Smith (Ref. 14). On 
the other hand, the result holds only under certain conditions. Much has 
been learned by discussing the necessity ofthese conditions and the question 
as to the circumstances under which these conditions are met in reality. A 
major part of this chapter will be devoted to this point. The results above 
also have the implication that a society that would like to choose a specific 
Pareto optimum-e.g., on the grounds of some fairness or justice considera
tions-may make use of the organization of a market economy to achieve 
this goal. But it can only successfully do so if this society is prepared to 
redistribute initial endowments or income. On this general, and rather 
imprecise, Ievel of discussion these remarks may suffice to give an idea of 
the importance of analyzing the relationship between Pareta optima and 
equilibria. The following sections will take up some of these aspects in a 
precise formal framework. 

Before we start with that discussion, Iet us first have a Iook at the 
general mathematical structure ofthe relationship between the two concepts. 
In essence, the question is whether the set of vector maxima of 

max U(a) s.t. a E A 

can be parametrized with respect to the distribution of resources and shares 
and prices: Given a Pareto Optimum a = ((x, ), (.y})) is there some ( W;, e'}, p) 
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suchthat 

.X, solves max u,(x,) x, EX, 
x, 

yj solves max pyj s.t. yj E Yj 
y) 

and given some equilibrium allocation a is this allocation a Pareto Optimum? 
Two remarks seem in order: The parametrization involved is obviously 

of such a kind that the vector maximization problern is decomposed into 
several independent scalar-valued maximum problems. This parametriza
tion is not in an obvious way related to the possibility of parametrizing the 
problern by scalarizing it D.: a,u;(a)]. Both methods of parametrizing are 
discussed in welfare economics. But weshall concentrate on the first method. 

We should also note that the number of parameters can be reduced. 
It would be sufficient to look for a distribution of wealth ( R,) and prices p 
suchthat 

x, solves max u,(x,) s.t. px, ~ R., X, EX, 
x, 

y1 solves max py1 
y) 

and L: R, = pw + L: PYj· It is obvious that if there exists such ( R,, p) then 
there exists ( w., OiJ, p) as required above. Hence the parametrization involves 
essentially M + L parameters. 

4.2.1. The Classical Case. This section contains the classical treatment 
of the two fundamental theorems of welfare economics on the relationship 
between Pareto optima and equilibrium allocations. It can be found in 
almost any textbook on welfare economics or general equilibrium theory 
(e.g., Refs. 7-9). Herewe follow most closely Mas-Colell (Ref. 15). In all 
that follows we shall make the following assumption: 

Assumption 4.1. The sets X,, i = 1, ... , M, and Yj, j = 1, ... , N are 
nonempty and closed. 

Let us start with a theorem on the Pareto optimality of equilibrium 
allocations. The required condition appears to be surprisingly weak: 

Assumption 4.2. Local nonsatiation, except possibly at a single bliss 
point, for all consumers. For all i = 1, ... , M we have for S, := 
{x EX, I u;(x) ~ u,(z)}Vz EX, 'l*'S, ~ 1 and Vx E X,\S, VE > 0 3z E 

X,: llz- xll ~ E and u,(z) > u,(x). 
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Theorem 4.1. Under Assumptions 4.1 and 4.2 an equilibrium alloca
tion is a Pareto optimum. 

Proof. Let p be the price system associated with a. Suppose a is not 
Pareto optimal. Then there exists an allocation a' E A such that u,(x;) ::=; 
u,(x,) Vi and uk(x~) > uk(xd for some k. Since xk solves 

it must be true that px~ > pxk. 
Similarly, because of Assumption 4.2, px; ::=; pxj. And hence, 

p L. x; > p L. x, 
As both a and a' are attainable, we have 

pw + P L. y; > pw + P L. Y1 

But L py', > L py1 implies pyj > py1 for some j. As y1 maximizes profits on 
y; (equilibrium allocation!), we have a contradiction. 0 

At first view, this seems tobe a very strong result. On the mathematical 
side, not even continuity of u, is required. Only the occurrence of proper 
local maxima is excluded. It should, however, be kept in mind that Theorem 
4.1 does not contain any information about existence properties of equili
brium allocations. As a matter of fact, to ensure existence of such allocations, 
we need much more restrictive assumptions (e.g., Refs. 7-9). 

From an economist's point of view the result is virtually achieved 
without assumptions, since Assumption 4.2 is considered to be a very weak 
requirement. Indeed, versions of Theorem 4.1 have had quite an impact on 
the strength of support for the organization of an economy as a private 
ownership economy. If an equilibrium allocation would indeed describe 
the outcome of a market economy reasonably weil, state interventions, e.g., 
in the form of commodity taxes, are bad, because in general they prevent 
the resulting allocation from being Pareto optimal. Any regulation that 
inhibits the free formation of prices via the market mechanism has this 
property in general. According to this view, actions of the state should be 
restricted to measures that redistribute wealth to conform with principles 
of equity and fairness, as suggested in Ref. 16, for example. 

But, of course, equilibrium allocations tagether with the specification 
of the underlying modelleave out quite a number of phenomena of real-life 
economies, some of which we shall discuss in the following sections. It may 
be considered the strength of the ADM that it provides a framework that 
helps in categorizing those phenomena that raise doubts about the optimality 
of the outcome of n.arket processes. This roJe of the ADM model seems 
much more important than the affirmative statement of Theorem 4.1. 
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We now turn to a converse ofTheorem 4.1: Under which circumstances 

can a Pareto optimum be obtained as an equilibrium allocation? Such a 

theorem needs more assumptions on the structure of (X., Yj, u, ). A very 

natural tool for handlingsuch questions is the separation theorem for convex 

sets. Therefore we make the following assumption: 

Assumption 4.3. V i = 1, ... , MX, is convex. 

Assumption 4.4. V i = 1, ... , M { x E X, I u, ( x) > u, ( z)} is convex V z E 

X,; i.e., u, is quasiconcave. 

Assumption 4.5. Vj = 1, ... , N Yj is convex. 

These convexity assumptions almost suffice to assure that each Pareto 

optimum can be attained by an allocation satisfying the following condi

tions: 

Definition 4.3. An allocation a is called a quasiequilibrium allocation 

with respect to p E IRL, iff a E A and 

Vi = l, ... ,M u,(x) ~ u,(x,) implies px ~ px; 

Vj = 1, ... , N A > PY; = PY; for all y1 E Yj 

This almost Iooks like an equilibrium allocation: the only difference is that 

consumers do not necessarily maximize utility [px ~ px, implies u,(x) ~ 

u,(x;)], but minimize expenditures for those x yielding at least as much 

utility as .X,. Unfortunately, the two problems are not equivalent. This may 

be due to a discontinuity of u, or "problems at the boundary." As an 
example illustrating the problern created by discontinuity consider X, = 
{x E IRL I x ~ 0}, the lexicographic ordering and p = (1, 0, ... , 0). As an 

Fig. 4.1. I ndifference sets with "problems at 
the boundary." a 
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example of the second type of problern consider indifference sets {x E 

[0, afl u,(x) = u;(z)} =: I(z), where higher Ievels of u, are obtained by 
moving to the right and p = (0, 1 ). Note that x, minimizes expenditures on 
{x E X, I u,(x) ~ u,(x, )} but does not maximize utility on {x E X, I px ~ px;}. 

As our aim is to establish that a Pareto optimum is an equilibrium 
allocation, we shall proceed in two steps. First, Theorem 4.2 will show that 
essentially under the above convexity assumptions a Pareto optimum is a 
quasiequilibrium allocation. As a second step we shall Iook for conditions 
such that this allocation is also an equilibrium allocation. 

Assumption 4.6. Local nonsatiationfor one consumer. For some con
sumer i we have 

Vx EX, VE > 0 3z EX,: llz- xll < E and u,(z) > u,(x) 

Theorem 4.2. Under Assumptions 4.1, and 4.3-4.6 every Pareto 
Optimum a is a quasiequiJibrium allocation with respect to some p ~ 0. 

Proof. Without loss of generality, Iet 1 be the consumer of Assumption 
4.6, and Iet 

M 

V:= {x E X1l ul(x) > ul(xl)} + I {x EX, I u,(x) ~ u,(.x;)} 
1=2 

By Assumption 4.4, V is convex; and by Assumption 4.5 

Y + { w} := I ~ + { w} 
1 

is convex as weiL Since a is a Pareta Optimum, we have 

(Y+{w})n V=0 

and hence, by the separation theorem for convex sets, we obtain p ~ 0 and 
a E IR such that 

pz ~ a VzEY+{w} 

and 

pz ~ a Vz E V 

As a is attainable, LX,= LY, + w E y + { w} and thus 

M 

I x, E V:= I {x EX, I u,(x) ~ u,(x,)} 
1--:::l 
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By Assumption 4.6, I x, can be approximated by x E V. As px ~ a, we get 

P I x, = P I Yi + pw = a 

In particular, this implies 

and hence 

This establishes that y, are indeed profit maximizing with respect to p and 
lj. 1t remains to be shown that u,(x) ~ u,(x,) implies px ~ px,. Consider 
i = 1 and some x with u1(x) ~ u1(x1). By Assumption 4.6, x can be approxi
mated by z with u1(z) > u1(x). Since 

M 

z + L x, E V 
i=2 

we have 

M M 

pz + p I x, ~ p I x, 
r=2 1=l 

Hence, 

and letting z converge to x: 

px ~ pX 1 

For i ~ 2 and some x with u,(x) ~ u.(x,), consider some z approximating 
X1 and ul(z) > ul(xl). Then 

z + x + I xk E v 
k;<l,l 

Hence, 
pz + px ~ pxl + px, 

Again letting z converge to x1 gives the desired result. 0 
Now, under what circumstances is a quasiequilibrium allocation an 

equilibrium allocation? The following lemma gives a first ans wer. 

Lemma 4.1. Let Assumptions 4.1 and 4.3 be satisfied. Moreover, let 
u, be continuous. Now suppose that X; E X, and p E IRL are suchthat 

"u,(z) > u,(x,) implies pz ~ px," and px, > inf{pzl z EX;} 

Then "u,(z) > u,(x,) implies pz > px;''. 
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Proof. Suppose u,(z) > u,(x,) and pz = px,. Pick some y EX, such 
that py < px,. Consider Ay + (1- A)z EX,. By continuity of u, we have for 
sufficiently small A: u;(Ay + (1 - A )z) > u,(x,). Hence, we have p(Ay + 
(1 - A )z) ~ px, by the hypothesis of the Iemma. But Apy + (1 - A) pz < 
Apx, + (1- A)px, = px,. D 

Hence we could add continuity of u, as weil as the assumption px, > 
inf{pz I z E X,} to our set of assumptions and a Pareto optimum could be 
obtained (via Theorem 4.2 and the Iemma) as an equilibrium allocation. 
However, while continuity of u, is innocuous, the assumption that no 
consumer should be at his worst wealth position is not very satisfactory, as 
it depends on the price system p, which is endogenously determined. There 
has been considerable effort to find sufficient conditions that depend on 
the exogenous data ( Y,, X., u.) exclusively (Ref. 15). One possible set of 
assumptions that meets this requirement is the following: 

Assumption 4.7. Vi = 1, ... , M u, is continuous. 

Assuwption 4.8. Vi E {1, ... , M}X, =IR~ and u, is strictly monotone; 
i.e., z ~ x, and z o/c- x, implies u,(z) > u;(x,). 

Assumption 4.9. 2: X; n ( { w} + int 2: Y,) o/c- 0. 

Lemma 4.2. Let Assumptions 4.1 and 4.7-4.9 be satisfied. If a is a 
quasiequilibrium allocation, then 

Vi = 1, ... , M u,(z) > u,(x;) implies pz > px, 

Proof. Since u,(z) > u,(x,) implies pz ~ p.x., Assumption 4.8 implies 
p E IR~. Hence p 2: x, = pw + p 2: y, ~ 0. By Assumption 4.9 we have p 2: .x, > 
0 and therefore, for at least some i0 , px4, > 0. We show next that p is strictly 
positive. Suppose ph = 0; then 

p(x; +eh)= px, and u,(x, +eh)> u,(x,) 

(eh has a zero in every component except in the hth). Since the assumptions 
of Lemma 4.1 are satisfied for i0 , we obtain a contradiction. Hence, p is 
strictly positive. This implies that px, > 0 for all i with .x, 'i' 0. For those i 
the Assumptions of Lemma 4.1 are satisfied and therefore for those i Lemma 
4.2 is established. But for x, = 0 u,(z) > u;(x,) implies z 'i' 0, which in turn 
implies pz > 0 = px,. D 

While Assumptions 4.7 and 4.9 Iook quite innocuous in this finite
dimensional context, Assumption 4.8 is very strong. However, attempts to 
weaken this assumption have not been convincing (Ref. 15). 
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We are now in a position to state the following theorem: 

Theorem 4.3. Under Assumptions 4.1, 4.4, 4.5, 4.7, 4.8, and 4.9, a 
Pareta Optimum a is an equilibrium allocation with respect to some distribu

tion of resources and shares. 

Proof. Because of Theorem 4.2 and Lemma 4.2 there exists a p E IRL 

suchthat 

1. p 2.. x, > o. 
u. Vi = 1, ... , Mx, maximizes ui on {x E X,lpx ~ px.}. 

111. Vj = 1, ... , N yj maximizes py1 on Y,. 

Define ai := pxJ'i pxi. Then wi := aiw and (},1 := ai V i, j satisfies 

pw, + 'i (},jpy1 = pa,w + p 'i a,pyj 
J 

=a,(pw+p'i~) 

= aip 'i xi 

= px, 

Hence, with this distribution of resources and shares we have 

IV. Vi = 1, ... , Mx, maximizes ui on 

{x E X, I px ~ pw, + 'i e,jpYJ 

Therefore a is an equilibrium allocation with respect to ( w., eu ). 0 
Suppose a society would like to achieve a specific Pareta optimum on 

the grounds of some principles of justice. Then Theorem 4.3 teils us that a 
centralized mechanism of imposing specific production plans on firms and 
of assigning specific consumption plans to consumers is not the only 
conceivable means of implementing such an allocation. Rather, it is possible 
that this allocation is the outcome of market processes if the wealth of the 
society is distributed in an appropriate manner ( we leave out here a dis
cussion of the potential multiplicity of equilibrium prices consistent with 
one particular distribution of wealth). Hence, in essence, an agency would 

only have to assign to each consumer the appropriate financial means Ri 
(M parameters) rather than all plans that constitute an allocation [(M + 
N) x L parameters]. In a way this can be seen as a possibility of decentraliz
ing allocation mechanism and has played quite a role in the literature on 
planning the use of economic resources. 
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Theorem 403 also stresses a point that was raised in connection with 
Theorem 4°1: A specific distribution of property rights gives rise to a specific 
Pareto optimum, which may be quite undesirable if criteria of justice and 
fairness are consideredo It may be helpful in this context to take a quick 
Iook at the possibility of scalarizing the vector maximum problern yielding 
Pareto optima as solutionso Under quite unrestrictive assumptions (essen
tially Assumptions 403-405) ( eogo, Ref. 17) for each Pareto optimum a we 
can find a vector a E IRM, a o;t- 0 such that a solves 

M 

max L: a,u,(x,) sot. a E A 
!=l 

In other words, each specific Paretaoptimum gives rise to an implicit relative 
valuation of consumer i, a,o Such a valuation may or may not conform with 
distributive principles of a societyo Indeed, an allocation that is not a Pareto 
optimum could be preferred by such principleso 

lt is interesting to note that using such a scalarization of the vector 
maximum problern also sheds light on the roJe of the boundary problems 
that made the restrictive Assumptions 408 and 409 necessary for establishing 
Theorem 4030 It can be shown that the assumption px, > inf{px J x E X,} 
(Lemma 401) is only necessary for those consumers who obtain a utility 
weight a, = 0 ( cf. Ref. 17, po 287) at the Paretaoptimum under considerationo 
Put differently: if all consumers "count" at a Pareta optimum, then essen
tially convexity assumptions are sufficient to obtain such an optimum as 
an equilibrium allocationo 

The mathematical tools involved in establishing Theorems 402 and 403 
consist basically-and not surprisingly-of the separation theorem for con
vex setso Theorem 402 shows that the solution of a vector maximumproblern 
can be obtained by a set of independent scalar-valued maximum problems, 
if they are suitably parametrizedo In a way, this amounts to a statement on 
the decomposability of vector maximum problems: Under the stated 
assumptions the set of vector maxima can be reached as a Iist of solutions 
to parametrized scalar-valued optimization problems, where the parameters 
are p and u, = u,(x,), i = 1, 0 0 0, Mo While this decomposability result is 
interesting in its own right, the interesting decomposition from an econo
mist's point of view is contained in Theorem 4030 This again is a decomposi
tion result of the same kind, but with parameters ( p, R~> 0 0 0 , Rm) varying 
such that 

L: R, = maxp[(l: ~ + {w}) n L: X,] 

Obviously, more assumptions on the structure of (~,X;, u,) are needed in 
Theorem 403 than in Theorem 4020 Thus, from a mathematical point of view 
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Theorem 4.2 might Iook more attractive, but Theorem 4.3 has more economic 
content. 

Let us now turn to a discussion of the assumptions involved in the 
above results. While there is little to object to in Assumptions 4.1 and 4.2, 
Assumptions 4.3-4.5 need some comments. 

The convexity assumption on X; requires that all commodities be 
arbitrarily divisible. At least as an approximation this requirement does not 
appear unduly restrictive. The convexity of X;, however, is quite hard to 
justify, if commodities are differentiated by the location of availability. lt 
would imply that the consumption of some commodity would be possible 
at two different locations at the same time. Hence, either we have to give 
up the convexity assumption on X, or commodities should not be differenti
ated by the location of availability (cf. Ref. 18). 

If we accept the convexity of X;, the convexity of the sets {x E 

X, I u,(x) ~ u,(z)} does not impose a serious restriction. lt should be noted, 
however, that this assumption precludes tastes that express an aversion 
against mixing things: Consider L = 2 and suppose a consumer is indifferent 
between (2, O) and (0, 2). If he does not like a joint consumption, e.g., (1, 1), 
u,(O, 2) > u;(l, 1), this contradicts the convexity assumption. 

The convexity assumption on Y, is considered much more problematic 
as it precludes "increasing returns;" i.e., it precludes that a joint increase 
in inputs may Iead to a !arger increase in output. However, if we consider 
a technology that requires some large-scale machinery, an increase of inputs 
up to an "optimal" use ofthis machinery may induce more than proportional 
increase of output. This case has attracted much attention in economic 
theory and is one of the subjects of the economics of public enterprises. lt 
is quite easy to verify that admitting this case implies severe problems: A 
Pareto optimum cannot be obtained as an equilibrium allocation, and indeed 
an equilibrium allocation does not exist in general. This can easily be seen 
in Figure 4.2 ( N = M = 1, L = 2, X 1 =IR~). Indeed, these problems on the 

:xc:X 1 IU 1(X) =u,<){); Fig. 4.2. Noncoincidence of Pareto 
optima and equilibrium allo-
cations. 



www.manaraa.com

92 N. Schulz 

Ievel of a formal modeling of economic activity have been understood as 
hinting at problems associated with an efficient outcome of market processes 
in industries characterized by increasing returns. We shall return to this 
case in Section 4.3 .1. 

Another serious assumption is that ( U;, X,) are specific to consumer i 
and y; specific to firm j without any direct connections. Hence, the physical 
ability of consumption and the derived utility do not depend on other 
consumers' consumption activities nor on firms' activities. Indeed, this is 
the cause of the ease of decomposing the Pareto vector maximum prob lern. 
But it is easy to conceive of examples where this assumption is not met. A 
consumer's utility may depend on a firm's output (e.g., noise) or another 
consumer's consumption ( e.g., cigars, crowding effects) and the like. The 
discussion of such phenomena has been a major subject of welfare 
economics under the heading of "externalities" and "collective goods." 
While the above examples illustrate externalities, a pure collective good 
can only be consumed in equal quantities by all consumers (e.g., a park). 
In both cases there is a direct relationship between the consumption of 
different consumers and/ or the production of firms. As to the problems 
connected with these phenomena, neither Theorem 4.1 nor Theorem 4.3 
continues to hold in this form. We shall postpone the specifics to a more 
detailed discussion in Sections 4.3.2 and 4.3.3. 

Finally, the definition of an equilibrium allocation suggests that con
sumers and firms can trade commodities at the prevailing prices. This Iooks 
quite innocuous in a world without time or uncertainty. As commodities 
are differentiated with respect to the date of availability, a dimension of 
time is introduced into the model. The same could be done with uncertainty 
by differentiating commodities in addition with respect to the state of nature 
that obtains. If the number of dates and states is finite, nothing essential is 
changed in Theorems 4.1-4.3. However, now trading has to use contracts, 
and hence, contracts have to be possible. But if we consider two consumers 
one of whom Jives only in period 1 while the other one Jives only in period 
2 there is no possibility oftrading across periods. Another problern is created 
by uncertainty even if we consider one date. As different agents may possess 
different information on the actual state of nature, the enforceability of 
contracts is seriously limited. In the language of economists, there may exist 
causes that inhibit the formation of markets for certain type of commodities 
differentiated by date and state of nature. Hence, while Theorems 4.1-4.3 
remain valid formally, they only have a very limited economic content. We 
shall return to a fuller discussion of these problems in Section 4.5. 

The Iist ofproblems connected with a useful interpretation ofTheorems 
4.1-4.3 is far from complete ( e.g., are consumers really so rational as 
suggested, or why do firms and consumers take prices as parameters?). lt 
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may, however, suffice to give an idea of the relationship between the formal 
modeling of economic activity in the ADM and the impetus this model has 
provided for a more precise analysis of different economic phenomena 
which the ADM cannot take into account, and which incidently hint at 
problems that the market process may be confronted with. 

In the following we shall first generalize the ADM to infinite 
dimensions-this proves useful for the discussion of some economic 
phenomena-and then come back to the problems just mentioned. 

4.2.2. Infinitely Many Agents. The fact that in an equilibrium alloca
tion agentstake prices as given is usually justified by observing that a single 
consumer, say, among many others has no inftuence on prices. In that line 
of argument the assumption of price-taking agents is the more reasonable 
the !arger the number of agents. As a matter of fact a !arge number of agents 
is often identified with a high degree of competition. Therefore in a 
framework modeling competitive markets, the assumption of an infinity of 
agents seems very natural (cf. Refs. 19-21). lt turns out that introducing 
such an infinity of agents helps to relax the convexity assumptions. 

Following Hildenbrand (Refs. 19 and 21) consider a measure space 
(I, S'l, J.t) with J.t (I) < oo and J.t positive. This set plays the role of the index 
set {1, ... , M} above: each consumer is associated with some i E I. The 
same could be done for producers (cf. Ref. 21), but it will be convenient 
to assume the existence of one firm, without loss of generality. 

Given a correspondence (a mapping into the set of nonempty subsets 
of ~L) X of I into ~L' we denote by Lx the set of ~-t-integrable functions 
f of I into ~L with f(i) E X(i) a.e. in I. X(i) will be interpreted as the set 
of feasible consumptions plans of agent i. If the firm is characterized by 
Y c ~L' a pair (f, y) with f E Lx and y E Y is a state (or an allocation). 
Such an allocation is called attainable if 

l fd~-t = w + y 

Hence, Definition 4.1 is now modified as follows. 

Definition 4.4. An attainable allocation (], y) is a Pareta optimum, iff 
there is no attainable allocation (f, y) such that u( i,f( i)) ?; u( i, ]( i)) a.e. 
in I and u(i,f(i)) > u(i,}(i)) for i E B for some B with ~-t(B) > 0. 

Hence, a Pareto optimum is the solution of a vector maximum problern 
with possibly a continuum of objectives. As these generalizations are done 
with an eye on the feasibility of deriving results like Theorems 4.1-4.3, it 
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should not surprise us that the definition of the vector maximum allows for 
the possibility that this maximum may be dominated with respect to objec
tives of measure zero. 

The definition of an equilibrium allocation and a quasiequilibrium 
allocation now reads: 

Definition 4.5. An allocation (], 0) is called an equilibrium allocation 
with respect to p E IRL, if it is attain~ble and u(i, x) > u(i,i(i)) implies 
px > pf( i) a.e. in I and py ~ py for all y E Y. 

As in the section on the classical case, an equilibrium allocation can 
easily be associated with a specific distribution of wealth and shares, but 
that distribution does not play an essential roJe in the proofs. 

Definition 4.6. An allocation (], 0) is called a quasiequilibrium alloca
tion with respect top E IRL if it is attai~able and u(i, x) ~ u(i,/(i)) implies 
px ~ pj( i) a.e. in T and p_O ~ py for all y E Y. 

An inspection of the proof of Theorem 4.1 reveals that it carries over 
with minimal changes (sums are replaced by integrals, most equalities and 
inequalities only hold almost everywhere in I) to the present case. 

The analogue of Theorem 4.2 is more interesting; it requires weaker 
assumptions than those for the classical case. 

Assumption 4.10. f.L is atomless; i.e., VB c I with f.L(B) > 0 3M E s1 
suchthat fL(B) > f.L(M) > 0. 

Assumption 4.11. For each allocation f, the sets 

{(i, x) E T x IR LI x E X(i) and u(i,f(i)) < u(i, x)} 
and 

{(i, x) E I x IR LI x EX( i) and u(i,f(i)) ~ u(i, x)} 

belong to Yl". ® 97J(IRL) [the product a algebra of Yl". (the completion of s1 
with respect to f.L) and the Bore! a algebra on IRL]. 

Assumption 4.12. Y is convex and nonempty. 

Then we have the following theorem: 

Theorem 4.4. Let Assumptions 4.10-4.12 be satisfied and Iet Assump
tion 4.6 be satisfied for all consumers in B, f.L( B) > 0. Then every Pareto 
optimum (], y) is a quasiequilibrium allocation with respect to some p 'i" 0. 
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Hence, the convexity assumptions on the consumption sector of the 
economy are not needed in this framework. Assumption 4.1 0, which reflects 
that individual decisions of one consumer have no influence on the outcome 
of the collective activity, implies via Liapunov's theorem (e.g., Ref. 19, p. 
45) that the analogue of V in the proof of Theorem 4.2 is convex: the 
analogue may be defined with the help of the correspondence 

lj!(i) = {x E X(i)[ u(i,i(i)) < x} 

lj!(i) = {x E X(i) I u(i,f(i)) ~ x} 

V then corresponds to 

V= { l f dfk lf E L~} 

for i E B 

for i il B 

The general procedure of the proof of Theorem 4.2 carries over. But, of 
course, there are some complications due to the fact that it is not obvious 
that V ~ 0 and that the application of the separation theorem yields a 
support p of the "aggregate" allocations J f dfk and that it is again not 
obvious that p also supports f( i) a.e. in I. For details, see Ref. 21. 

With similar qualifications, the arguments in connection with Theorem 
4.3 carry over to the present case. 

In summary, a model allowing for a continuum of atomless consumers 
has two advantages: it gives a precise meaning to the assumption that 
individual consumers cannot influence prices and it allows for a much more 
general structure of consumer characteristics. 

4.2.3. Infinitely Many Commodities. The analysis of some aspects of 
economic phenomena is more conveniently conducted in a framework 
allowing for infinitely many commodities. These include analyses of the 
allocation of resources over time or states of nature or commodity differenti
ation [a type of commodity (e.g., a car) that is supplied in many slightly 
different forms]. Analyses of this kind are contained in Refs. 22-25. 

The question as to an extension of the results of Section 4.2.1 to 
infinite-dimensional spaces was first addressed by Debreu (Ref. 26). He 
finds that the arguments do not have to be changed substantially. The fact 
that the commodity space IR L of Section 4.1.2 is now replaced by some 
topological vector space R gives rise to the following problems: First, utility 
functions and preference relations are no Ionger so intimately connected 
(Ref. 27). Hence, as the more general concept a preference relation ::S, 

(complete ordering on X;) is used. Second, instead of prices for each 
commodity a valuation functional (linear form on R) is used. Hence, values 
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are attached to consumption and production plans and nothing can be said 
at this general Ievel as to the value of some commodity. Third, given the 
very generalform of commodity space, the continuity properties of preferen
ces are more delicate (Debreu uses convex preferences, which facilitates 
dealing with closeness problems). Fourth, in infinite dimensions the separa
tions theorem ( Hahn-Banach theorem) requires that one of the sets has a 
nonempty interior. It is essentially the assumption that Y := I y; has a 
nonempty interior that constitutes an additional restriction on the charac
teristics of agents, all others being in the same spirit as those in finite 
dimensions. Note that nonempty interiors have to be assumed in order to 
apply the separation theorem and not in order to ensure that quasiequili
brium allocations are equilibrium allocations. 

In order to state the analogaus theorems we give the assumptions used 
by Debreu. 

Assumption 4.13. Convexity of Preferences. 'r/i = 1, ... , M 'rfx, z E X, 
with x <, z we have 'r/t E ]0, 1[ x <, tx + (1- t)z. 

Assumption4.14. Nonsatiation. Thereisnox E X,suchthat'r/z EX;, 
Z ::5, X. 

Define I,(x, z) := {tl(l- t)x + tz EX,}. 

Assumption 4.15. 'r/i=1, ... ,M 'rfx,y,zEX, {tEI;(x,z)iy::"S; 
(1- t)x + tz} and {t E I,(x, z)l(l- t)x + tz ::"S,y} are closed in I,(x, z). 

The results established by Debreu are contained in the following 
theorems. 

Theorem 4.5. Let Assumptions 4.3, 4.13, and 4.14 be satisfied for a11 
i; then a (valuation) equilibrium allocation is a Pareto optimum. 

Theorem 4.6. Let Assumptions 4.3, 4.5, 4.13, and 4.15 be satisfied and 
Assumptions 4.14 for some consumer. If R is finite dimensional or if Y has 
an interior point, then a Pareto optimum can be obtained as a quasi
(valuation) equilibrium allocation with respect to some nontrivial con
tinuous linear form v. 

Some comments are in order. First, the qualification "valuation" equili
brium refers to the fact-alluded to above-that complete consump
tion/production plans are evaluated by some continuous linear form. We 
sha11 come back to this in a moment. Second, the fact that Y is required 
to have a nonempty interior is less innocent than it appears. As a matter 
of fact, one possible justification of this assumption consists in arguing that 
you can always produce less output with more input (so-ca11ed "free 
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disposal" assumption). In formal terms, this amounts to the requirement 
that the negative orthant is contained in Y. However, whether negative 
orthants have nonempty interiors or not depends on the commodity space 
R chosen. If R is the space of bounded sequences (Malinvaud, Ref. 22) or 
the space of essentially bounded functions (Bewley, Ref. 23), this require
ment is met. If we choose as R the space of countably additive measures 
(Mas-Colell, Refs. 9, 24, 28; Jones, Ref. 25), it is not. As it is desirable in 
some contexts-such as commodity differentiation-to use spaces the nega
tive ( or positive) orthants of which have empty interiors, some attempts 
have been undertaken to avoid such an assumption (e.g., Mas-Colell, Ref. 
28). Third, the question of existence of Pareto optima in infinite-dimensional 
spaces is much more delicate. Mostly, the existence problern has been 
discussed as an existence problern for equilibrium allocations, which 
together with Theorem 4.5 gives an existence result for Pareto optima (Refs. 
23, 24, 25, 28). 

Finally, Iet us return to the problern that values are attached to plans 
rather than commodities (or characteristics of commodities). Of course, if 
we choose spaces that permit an appropriate analytical representation of 
their conjugate spaces, values of plans can be "decomposed" into values 
of commodities. Unfortunately, the spaces used do not give rise to such 
representations in general. The conjugate space of Loo is the space of 
bounded additive measures. Therefore we have to use additional assump
tions in order to ensure that the continuous linear form can be represented 
as a countably additive measure, which, in turn, can be represented as a 
function in L1 (Bewley, Ref. 23). Similar arguments hold a fortiori for the 
space of countably additive measures (Mas-Colell, Ref. 24; Jones, Ref. 25), 
where economic considerations make it desirable that the valuation have a 
representation as a continuous function (commodities with similar charac
teristics should have similar prices). 

Summarizing, we may say that using an infinite-dimensional space 
Ieads to two types of problems: the requirement of nonempty interiors 
contained in the Hahn-Banachtheorem severely Iimits the choice of com
modity spaces; and, secondly, the interpretation of valuation functionals 
demands a much more detailed analysis. Attempts to solve these problems 
have pushed the state of the art some steps forward. But there remains a 
wide field for further research in this area. 

4.3. Classical "Market Failures" 

In this section, we shall discuss some of the problems connected with 
some aspects of economic reality, which the ADM in its classical form 
cannot adequately deal with, either because of the limitations of the 
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structural elements employed or because of essential assumptions on these 
elements that prove necessary to derive Theorems 3.1-3.3 (Ref. 29). 

Given the emphasis in this chapter on the relation between the Paretian 
vector maximum problern and the possibility of structuring the ideas on 
the performance of market economies, we have refrained from giving the 
most general treatment possible and also from presenting the many detailed 
results obtained so far, essentially for reasons of space. Much of the 
discussion of the phenomena taken up in the following subsections has 
made use of differentiability assumptions. Even though many results can 
be obtained without such assumptions, differentiability eases interpretation. 
In the following, differentiability is used whenever it is deemed the most 
efficient way to give a concise idea of the structure involved. 

It is probably worth noting that the analyses of these phenomena hint 
at problems that prevent market processes from providing a Pareto optimal 
allocation and not much more. In most cases, possibilities of remedying 
these problems by certain state interventions were suggested. But these 
suggestions have to be read with great care. The possibility of implementing 
such interventions in an appropriate manner raises serious additional prob
lems. For example, the requirements on information are usually tremendous. 
We shall not even touch on the ensuing problems. A substantial Iiterature 
has grown up on processes that elicit the necessary information, e.g., in the 
context of public commodities (Refs. 30-32). 

As these processes can also be regarded as algorithms converging to 
Pareto optima, we may take this opportunity to hint at the fact that 
algorithms determining vector maxima have been developed in economics, 
in particular in the theory of planning (Ref. 31). However, while 
mathematicians are usually fond of algorithms with fast convergence rates, 
it is no surprise that the processes developed in this context are not efficient 
in this sense. After all, these processes are constructed in such a way that 
they can be sensibly implemented, and this may require that the process 
ensure a truthful revelation of information. Let us conclude these hints at 
algorithms by noting that the Iiterature on calculating equilibria (Ref. 33) 
in conjunction with Theorems 3.1 and 3.3 provides a means of calculating 
Pareto optima in a classical framework. 

4.3.1. Increasing Returns. As mentioned in Section 4.2.1, increasing 
returns in production contradict the convexity assumption on technology 
sets. As is immediately apparent in Figure 4.2, Theorems 4.1-4.3 fail to hold 
in such an environment. It has been suggested that firms without a convex 
technology set should follow a "marginal cost pricing" rule in order to 
solve the problems involved (Refs. 34 and 35). 
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The idea of marginal cost pricing is fairly simple. Consider Figure 4.2. 
If we replace Y + { w} by its tangent cone at x, then the arguments of 
the classical case apply and we obtain a price system p, normal to the 
tangent cone. Hence the tangent cone at x has slope - p1/ p2 • If 
Y = {y E IR 2 iy2 ~ g(y1), y 1 ~ 0}, where g is a differentiable "production" 
function, the boundary of Y + { w} has slope g' (j/1) ( ji = x - w). Hence, 
we have 

But the left-hand side is just the marginal cost of producing an infinitesimal 
extra unit of Y2· To see this, consider y2 = g(y1). For simplicity, suppose g 
has an inverse. Hence g- 1(y2) = y 1• This function assigns to each Ievel of 
output the required quantity of input. Hence, the additional requirement 
of input for an extra unit of output is just the negative derivative of 
g- 1 : -1/ g'(y 1) (negative because of the sign convention of y1). As units of 
commodity 1 cost P~> the Ieft-hand side is the extra cost involved-in the 
Janguage of economists, the marginal cost. Loosely speaking, on the formal 
side, the marginal cost pricing rule boils down to approximating the noncon
vex technology sets by their tangent cones at the Pareto optimal production 
plans. 

These ideas have been analyzed most rigorously by Guesnerie (Ref. 
36). As a formal representation of the tangent cone in a general framework 
he uses the "cone of interior displacements," k(A, x). He shows that 
essentially under the same assumptions as in Section 4.2.1 a Pareto optimum 
can be obtained as a "marginal cost pricing" equilibrium allocation (QA 
equilibrium in Guesnerie ), if the nonconvexities involved in Y; have the 
following characteristics: 

i. k( Y;, y1 ) is convex and nonempty. 
ii. Y; contains only one output (commodity L, say). 

iii. The sections of Y;: {y E Y; I yL = a} are convex for all a E UJN). 
Y; has the first characteristic, if its boundary is smooth around Yi· And a 
marginal cost pricing equilibrium allocation is an allocation where con
sumers minimize expenditures on their preferred sets, producers with convex 
technologies maximize profits, and producers with nonconvex technologies 
minimize costs and produce the Pareto optimallevel of output. Hence, this 
result extends Theorem 4.2 in Section 4.2.1. 

Several comments are in order. First, the restriction that nonconvex 
producers produce one output only is needed because marginal costs refer 
to one output. There are no problems in allowing for more outputs. But 
then the term "marginal cost" is no Ionger adequate. Second, while in the 
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classical case profits are nonnegative in equilibrium, profits for nonconvex 
producers are typically negative if they have to sell their productat marginal 
cost. Hence, if we want to specify shares 0,1 , we must notice that ()ij is no 
Ionger necessarily a right to a share of profits but an obligation to finance 
a share of the deficit. Third, a distribution of rights/ obligations is no Ionger 
sufficient for a market process to yield a Pareto optimum: the Pareto optimal 
Ievels of output have to be assigned to nonconvex producers. Hence, 
nonconvexities make it necessary that market processes are complemented 
by some institutional arrangements in order to ensure a specific Pareto 
optimum as an outcome of such processes. 

Let us now turn to an analogue of Theorem 4.1. Suppose producers 
behave as above (in a marginal cost-pricing equilibrium) and suppose 
consumers maximize utility und er a budget constraint. Moreover, Iet ( w" ()ij) 

be given. Leaving aside problems of existence of such equilibria-starting 
from a specific distribution ( w" O,J-it turns out that such equilibrium 
allocations are not necessarily Pareto optima. This can easily be seen in 
Figure 4.3. Here, we have one consumer and one nonconvex producer. 
The allocations .X, z, s are marginal cost-pricing equilibrium allocations. 
But s is the only Pareto optimum. Still, among the marginal cost pricing 
equilibria we do have a Pareto optimal one. Hence, one could, in principle, 
imagine that some public authority decides on s2, the output of the noncon
vex producer. However, this is not the general case. With several consumers 
it may happen that none of the marginal cost-pricing equilibrium allocations 
starting from some given distribution ( W;, 0,) is Pareto optimal ( Refs. 36, 
and 37). This implies that for some distribution ( w" O,J there is no way a 
public authority's decision on the provision of a commodity produced under 
increasing returns can ensure a Pareto optimal outcome of market processes. 
This is only possible if the distribution is appropriate. This result has 

Fig. 4.3. Nonconvex producers and nonoptimal equilibrium allocations. 
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destroyed a largely heldbeliefthat the concern for Pareto optimal outcomes 
(the efficiency goal) can be separated from distributional concerns. In this 
context it might prove necessary to redistribute property rights in order to 
achieve an efficient allocation. As a matter of fact, this implies that an 
expropriation may make everyone-including the expropriated consumer
better oft. 

In summary, the discussion of the feasibility of supporting Pareto 
optima by some hyperplane in a nonconvex environment Ieads to a quite 
natural solution via approximating nonconvex sets by their tangent cones. 
Trying to implement such supports in an economically meaningful way 
reveals some important insights in the informational requirements of such 
implementations as weil as in the relationship between efficiency concerns 
and distributional concerns. 

4.3.2. Externalities. As alluded to in Section 4.2.1, externalities refer 
to the case that (u., X,) and ~ may depend on the other agents' activities. 
In a world that becomes ever more crowded this type of phenomenon is a 
very important one. And indeed, while the problern posed by externalities 
to an efficient working of markets has been recognized for several decades 
(Refs. 3-5, 38), the rather recent debate on pollution, for example, reflects 
the tendency for externalities to become more relevant than ever before 
(Refs. 39, 40). 

Some aspects of the problems of a market economy dealing with this 
phenomenon are highlighted by an analysis of the relationship between 
Pareto optima and (quasi-) equilibrium allocations. There is no problern in 
extending both concepts to cover the situation under consideration. 

Assurne that X, and ~ are subsets of~L(M+NJ_ Now a Iist of consump
tion plans and production plans ((x,), (y1 )) is an element of Xm, say, if 
consumer m considers Xm a feasible consumption plan, given that all other 
consumers i, i rf m, choose x, and all producers choose Yj· Of course, if a 
consumer i feels that the feasibility of his consumption plans is completely 
independent of the actions of all other agents, this generalization just 
amounts to embedding X, of the former interpretation into ~L(M+Nl. In 
general, however, we allow for such dependencies. The same interpretation 
holds for ~- Finally, the utility functions u, are now defined on Xi c 

~L(M+Nl. Note that even if the feasibility of consumption plans does not 
depend on the action of others, the well-being of a consumer may depend 
on those. 

A Iist a = ((x,), (yj)) now is a state, if 
M N 

a E B := n X, n n ~ 
i=l ;=1 
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Again a state is attainable if ( 4.1) is satisfied. The set of all attainable states 
is denoted by A. 

We now have the following definition for a Pareto optimum. 

Definition 4.7. An attainable state a E A is a Pareta Optimum iff there 
is no a E A suchthat u,(a) ~ u,(il) 'lti E {1, ... , M} and u,(a) > u,(tl) for 
some i E {1, ... , M}. 

Similarly, if we replace ( 4.2) and ( 4.3) of Section 4.1.2 by 

max u,(a) s.t. a E X" px, ~ pw, + 2.: e,,py, ( 4.4) 

max py1 s.t. a E Y, ( 4.5) 
yl 

the definition of an equilibrium allocation carries over. 
Thus the concepts can easily be extended to cover the case of exter

nalities. What does not carry over, however, is the intimate relationship of 
both concepts: An equilibrium allocation cannot be shown to be a Pareto 
optimum, nor can a Pareto optimum be shown to be a (quasi-) equilibrium 
allocation, in general. Moreover, the breakdown of this relationship is not 
incidental but systematic. 

As a simple example thereof consider the case of M = 2, L = 2. It will 
suffice to consider consumers only. Weshall assume that the u, are differenti
able on X,. This will prove helpful in seeing the problems encountered 
without losing essential degrees of generality, by analyzing the first-order 
conditions for equilibrium allocations and Pareto Optima, respectively. 
Suppose we have 

and 

(superscripts refer to commodities) 

and 2 infticts an externality on 1: D3 u1(x) < 0 (partial derivative of u1 with 
respect to the third argument). If there are no other externalities, we can 
assume 

and for 2: 

Now assuming interior solutions, it follows from the first-order conditions 
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for utility maximization that at an equilibrium allocation a we must have 

D,u,(x) D3uz(x) 
Dzu,(x) D4uz(x) 

However, recalling that a Pareto Optimum a can be obtained as the Solution 
to 

a 

the first-order conditions imply 

D,u,(x) 

Dzu 1(x) 

D3u,(x) + J.LD3uz(x) 
J.LD4uz(x) 

[J.L is the Lagrange multiplier for u2(x) ~ u2(x)]. It is obvious that both 
equations cannot hold simultaneously. And hence, an equilibrium allocation 
cannot be Pareto optimal and a Pareto optimum cannot be obtained as an 
equilibrium allocation in the sense of Definition 4.2. 

Mathematically the problern is the following: Ifwe Iook at the preferred 
sets {a I u,(a) ~ u,(ti)} of consumers and the technology sets ~ ofproducers, 
the assumption of convexity of those sets would buy us a support p, E 

IRL(M+N> (or p1 , respectively) for each i andj. However, there is no reason 
for these supports to coincide for all i and j, nor is there any reason that 
the M + N projections of p, (or p1 ) on IRL coincide for fixed i (or, respec
tively, j). If we now look at the proof of Theorem 4.2, it is precisely the 
fact that in the classical case the SUpports of these Sets at Q have both of 
these properlies that allows us to conclude that the support of the "aggre
gate" preferred set V and the aggregate technology set Y is at the same 
time the support for the individual sets. Put differently and assuming 
differentiability: while in the classical case the gradients Du; have to be 
collinear (at interior solutions) at a Pareta optimum (this can easily be 
checked using, e.g., first-order conditions), this is no Ionger true in the 
present case. And hence the decomposition property of Theorems 4.2 and 
4.3 cannot be expected to hold in this simple and convenient form. 

In economic terms, in the presence of externalities a Pareto optimum 
can only be supported by personalized prices. But how should a competitive 
system lead to an implementation of such price systems? There is obviously 
no simple competitive mechanism providing such an outcome. Since market 
forces therefore will generally Iead to a Pareta inferior allocation, the 
presence of externalities has been taken as a justification of state intervention 
of various forms. Obviously, if externalities were relevant phenomena for 
all types of commodities, there would be hardly any solution to the problern 
short of assigning consumption and production plans to each agent. The 
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following measures are usually discussed in a partial equilibrium context 
( considering only a few commodities) with only a very restricted nurober 
of externalities. 

The measure that has attracted most efforts is a tax/ subsidy solution. 
If consumer 2 would have to pay an appropriate tax per unit of commodity 
1 consumed, an equilibrium allocation with such a tax could be Pareta 
optimal. This can easily be seen from the first-order conditions (Ref. 41). 
There are, of course, many possible objections to such a solution: the cost 
of administering such a tax, or the fact finding the appropriate tax requires 
information on the preferences of consumers, or on the technology of 
producers, etc. Another proposed solution is the assignment of property 
rights (Ref. 42) and the possibility of compensation payments. lf consumer 
2 has the right to emit noise ( commodity 2), consumer 1 can pay him 
a sum, if he reduces the intensity of noise. On efficiency grounds this 
Ieads to a satisfactory situation: the price is again adjusted such that the 
first-order conditions for Pareto optima and equilibrium allocations are 
compatible. 

Obviously, this is not and cannot be a full discussion of the problems 
involved. The interested reader is referred to the standard Iiterature on 
welfare economics. Here, the interesting pointisthat the measures proposed 
are designed in a way to satisfy the first-order conditions of vector maxima 
and of equilibrium allocations. Put differently, measures are proposed that 
allow for economically meaningful individualized supports of the preferred 
sets and technology sets. And, hence, it is a close analysis of vector maxima 
that provides the analytical framework for the discussion of the impact of 
such measures. 

4.3.3. Public Goods. Another type of interrelationship between 
agents' consumption and production plans is due to the fact that some 
commodities ( e.g., defence) can only · be consumed simultaneously and 
individual consumers (or producers) cannot be excluded from consumption 
once it is provided. Of course, there are not many commodities that fit this 
ideal of a public good. But the implied problems remain relevant in less 
clear-cut examples (education, TV, parks) (Refs. 3, 4, 5, 43). 

In formal terms, the fact that consumers have to consume the same 
amount of a pure public good basically has the same consequences as 
externalities. While there is in general no problern of the existence of 
supporting hyperplanes for the individual preferred sets and technology 
sets, there is no reason for these supports to coincige nor to provide a 
support for the respective aggregate sets. Hence, again neither Theorem 4.1 
nor Theorems 4.2 and 4.3 can be expected to hold. 
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As a simple illustration, consider again M = 2 = L, where 1 is a public 
and 2 is a "private" commodity. AgaiP.. we assume differentiability of uh in 
order to be able to make use of first-order conditions. Otherwise the setup 
is as in the classical case. Let Y = { y E IR 2 1 g( y 2 ) ~ y 1}, where g is a 
differentiable (production) function. 

For an equilibrium allocation ci: first-order conditions then imply 

D 1u 1(x\ xi) D 1u2(x\ x~) 
D 2 u 1(x\ xi) D 2 u2(x\ x~) 

(superscripts denote commodities), and for a Pareto optimum 

Comparing both equations reveals immediately that they cannot hold simul
taneously. Hence, an equilibrium allocation is not Pareto optimal and a 
Pareto optimum is not an equilibrium allocation. 

If a firm, a public enterprise say, can chargedifferent prices to different 
consumers, than a Pareto optimum can be obtained by an equilibrium 
allocation with personalized priccs (a Lindahl equilibrium allocation) (see, 
e.g., Ref. 44). But as in the case of externalities, such prices would have to 
be chosen in just the right proportions. In order to perform such a task the 
firm or some public authority would have to know the preferences of 
consumers. But it would not be in the interest of consumers to reveal their 
preferences truthfully. They could pretend that the commodity is no use 
for them at all and nevertheless enjoy the consumption because they cannot 
be excluded from such consumption by the very nature of a public good. 
Hence, there is a severe free rider problern inherent in such a solution. 

It has also been suggested that a public authority could decide on the 
Ievel of a public good and on individualized contributions of each consumer 
(independent of his consumption of the public good) in order to finance 
the production of the commodity. As a matter of fact, such a solution (a 
"politicoeconomic" equilibrium allocation, Ref. 41) Ieads to an allocation 
that satisfies the first-order conditions of a Pareto optimum. This procedure 
requires less information. The contributions just have to be set in such a 
way that they do not use up all of the consumer's financial resources. 

Again, this is no complete discussion either of the problems involved 
or of the proposed solutions to the provision of public goods. But the 
unifying aspect is again the search for institutional settings that could 
complement a market economy in such a way that the resulting allocation 
satisfies the first-order conditions of a Pareto optimum. 
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4.4. Second Best Pareto Optimality 

While the preceding sections imply that, in principle Pareto optima 
can be implemented by some authority, there remain serious doubts as to 
the feasibility of the policy tools needed for such an implementation. A 
direct redistribution of property rights might not be feasible for political 
reasons. Theinformation and control necessary for the design and execution 
of appropriate pricing schemes (Sections 4.3.1-4.3.3) will be subject to 
severe limitations. Hence, in general, it will be difficult and often impossible 
to transform the recommendations contained in Theorems 4.1-4.3 (and their 
analogues) into effective policies. 

At first glance one might think that we could use these recommendations 
at least in those cases where an implementation appears quite easy (e.g., 
paying a subsidy), leaving those sectors of the economy in which such 
policy tools are not available as they are. However, as soon as we have two 
sources of potential inefficiencies-increasing returns and externalities, 
say-it is dangerous to use policy tools to rectify one of them-e.g., by 
imposing a tax on a pollutant-while the cost of regulating a producer with 
an increasing returns technology is prohibitive. Such a procedure may indeed 
Iead to an allocation that in Pareto's sense is worse than the original 
allocation. This awkward situation was recognized quite early in the 
Iiterature (Refs. 3, 45). 

1t has led to quite a number of studies of specific policy tools. Instead 
of asking the question: which tools are needed to obtain a Pareto optimum? 
the optimal use of specific policy tools was analyzed under the presumption 
that only they are feasible. The Iiterature on optimal pricing rules for public 
firms (Refs. 46, 49) and on optimal taxation (Refs. 47, 48) belong to this 
field of analysis. While these studies were very important as a first step, 
they-quite naturally-suffered from several deficiencies. Most of these 
models take only one or a few commodities (in relation to the set of all 
commodities) into account, thereby neglecting the repercussions on the rest 
of the economy (partial equilibrium models). In addition, optimality was 
usually analyzed with respect to some welfare function (loosely speaking, 
a weighted sum of utility functions; cf. Section 4.6). Some results are 
therefore specific to the characteristics of the welfare function used in those 
analyses (Ref. 50). 

In 1979, Guesnerie (Ref. 50) suggested a unifying framework for a 
major part of these studies. At the same time this framework generalizes in 
a natural way the concept of Pareto optima. Loosely speaking, instead of 
modeling a world where all kinds of policies are feasible-the world of 
Sections 4.2 and 4.3-his model allows for an explicit representation of the 
restrictions imposed on the feasibility of policy tools. Moreover, it allows 
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for a simultaneaus modeling of all commodities and it makes use of the 
Pareto ordering instead of some welfare function. 

Starting with the observation that the concept of Pareto optimality 
suggests that all agents could be controlled completely (assignment of 
consumption/production plans to each agent), the restrictions on the feasi
bility of policy tools are now reflected by limiting the possibilities of control. 
lt is suggested that some agents can only be controlled within a subset of 
X; or, respectively, lj. More precisely, consumers i E I 1 will choose a 
consumption plan in C;(s) c X; and producersj E 11 will choose a produc
tion plan in Tj(s) c lj, where s ES c IRP is a vector of signals (e.g., prices) 
and S is a closed set. 

Now, a state is an allocation ({x;), (yj)) and a signal vector s suchthat 
(Iz := {1, ... , M}\Ih 12 := {1, ... , N}\11) 

x, E C;(s) Vi EI! ( uncontrolled consumers) 

X; EX, Vi E I2 ( controlled consumers) 

yj E Tj(s) Vj E 11 (uncontrolled producers) 

yj E lj Vj E 12 ( controlled producers) 

SES. 

Such a state is feasible, iff 

M N 

Ix.~Iyj+w 
•=I J=l 

Definition 4.8. A feasible state ({x,), {)11 ), s) is a second best Pareto 
optimum, if there is no feasible state ((x;), (yJ, s) suchthat u;(x,) ~ u;{x,) 
Vi E {1, ... , M} and uk(xk) > uk(xd for some k E {1, ... , M}. 

lt is obvious that Definition 4.8 generalizes Definition 4.1. lt should 
be noted that phenomena like public commodities and externalities are not 
included in this formulation. There would be no problern taking these 
aspects into account along the lines of Sections 3.2 and 3.3. Guesnerie's 
analysis, however, deals only with the case covered in Definition 4.8. Making 
use of this framework he derives a substantial part of pricing rules and 
taxation rules as special cases of an analogue of Theorem 4.2, which before 
had been derived independently. Hence, his framework stresses the basic 
common principles underlying these pricing and taxation rules (Refs. 50, 51). 

In the context of the present chapter it is noteworthy that the recourse 
to the formulation of the second best Pareto optima as a solution to a vector 
maximum problern yielded the insight in the underlying principles. Most 
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ofthe previous contributions on second best Pareto optima did not formalize 
the problern explicitly as a vector maximum problem. The mathematical 
tools used are essentially the same as those used by Guesnerie (Ref. 36) in 
his contribution on nonconvex economies. He approximates the choice sets 
of agents and the signal space by tangent cones, uses a separation theorem 
for these cones, and derives an analogue of Theorem 4.2. We refrain here 
from stating this result. Without comment it does not reftect much more 
than the Supportability of a second best Pareto optimum by a vector of 
social values of commodities. Hence, this vector maximum problern can 
again be decomposed into a set of scalar valued maximum problems. But 
apart from this point, the comments needed to communicate the implications 
and interpretations for rules of taxation, for example, are beyond the scope 
oftbis paper. The interested reader is referred to Ref. 50 and for subsequent 
elaborations on details to Ref. 51. 

4.5. Incomplete Markets 

In the classical case it was argued that equilibrium allocations are 
Pareto optima and vice versa under quite mild assumptions. Essentially, 
the argument is based on the fact that the price-system supports the aggregate 
preferred set V and the set of attainable aggregate consumption plans, 
Y + { w}. As long as we relate all activities to one period of time and as 
long as there is no uncertainty involved, we can interpret an equilibrium 
allocation as the outcome of trading processes where agents exchange 
commodities k and I at the terms of trade Pk and Pt. respectively. And 
hence the supporting price system has a natural interpretation within a 
context of trading commodities. 

Now suppose that the indices k and I refer to the same or to different 
physical commodities available at two different periods, today (k) and some 
day 5 years later (/), say. The picture of two agents handing over some xk 
in return for some x 1 obviously has to be modified. Today xk can only be 
traded for a promise to deliver x 1 five years ahead. A contract has to be 
signed. This, however, presumes that both agents can meet today. But one 
of them may not be alive today, so that this contract cannot exist. This, of 
course, is an extreme case. But it highlights a problernthat does not disappear 
in less polar circumstances (Samuelson, Ref. 52; Gale, Ref. 53), as long as 
we insist on trades on a quid pro quo basis. Equilibrium allocations that 
are outcomes in incomplete markets (no trading across time) are typically 
not Pareto optima (Ref. 54). Butthereis an easy way out of this dilemma. 
If we introduce some store of value, Iet us term it money, an agent gets 
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money in return for delivery of xk today, which he can spend on x 1 five 
years later. Hence, the characterization of Pareto optima as equilibrium 
allocations quite naturally gives rise to the necessity of money as a store 
of value, if the feasibility of contracts is limited. 

While the introduction of a time dimension allows for an interesting 
interpretation of a supporting price system, uncertainty poses quite a number 
of problems that have no easy solution. Formally, we can introduce uncer
tainty by indexing commodities by the state of nature in which they become 
available (Ref. 7). Theorems 4.1-4.3 will continue to hold, on a formal Ievel. 
But how do we interpret the supporting vector in this context? If the 
feasibility of contracts is not limited in any way, there are no problems. 
But while there are such contracts, contingent on states of nature, in 
reality-like insurance contracts-we do not observe too many contracts 
of this kind. Before we turn to potential causes of this lack of contingent 
contracts, let us quickly explore whether there is a simple trick like the 
introduction of money such that we look at the working of the trading 
process as follows: For each pair (date, state of nature) trading with 
commodities referring tothispair only takes place (spot markets) and there 
is a possibility of transferring values between such pairs-much the same 
as money transfers values between dates. And indeed, if agents can insure 
themselves against all states of nature, then the same argument as in the 
purely intertemporal context applies. Hence, if we have money and a 
complete set of insurance markets, then the support can sensibly be inter
preted as a price system (Refs. 53, 55, 56). The characterization properties 
of Pareto optima in a world of uncertainty thus Ieads us to the desirability 
of another type of institution: insurance. 

But unlike in the purely intertemporal context, there exist serious 
difficulties that were not mentioned so far. In essence they are based on 
asymmetric information on the part of agents. It is obvious that contracts 
( which may be insurance contracts) can only be traded if they are contingent 
on events that both agents can observe. Hence, whenever there are asym
metries in the availability of information across agents, there are severe 
restrictions as to the formation of contracts necessary for efficiency. Quite 
a voluminous strand of Iiterature has developed dealing with different 
aspects of the ensueing problems. It would be beyond the scope of this 
paper to discuss these in any detail. Almost all of them Iead to a breakdown 
of the link between Pareto optima and equilibrium allocations as well as 
to problems with the existence of equilibrium allocations. While this cer
tainly sounds quite negative, the attempts to restore Pareto optimality-at 
least in a suitably modified sense-provided many useful insights into the 
structure of market processes and the roJe of some economic institutions
e.g., the banking system. 
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We end this section by presenting a selective Iist of contributions taking 
up some of these aspects (see Ref. 60 for a survey). First, we mention the 
phenomenon of "adverse selection," which is due to the fact that some 
agents are better informed about risks than others. For example, the owner 
of a used car usually has more information on the state of his car than a 
potential buyer ( e.g., Ref. 57). This will Iead to nonoptimal allocations. 
Second, "moral hazard" refers to the fact that an agent may at least partly 
be able to inftuence a state of nature without other agents being able to 
distinguish between the exogenaus randomness and this influence (Ref. 58). 
Third, "signaling" deals with the situation that an agent has to emit a signal 
( education) in order to reveal his state of nature (productivity) to another 
agent ( employer ). This may Iead to a socially undesirable high Ievel of 
signal production (Ref. 59). If markets are incomplete for whatever reason, 
price expectations play an important role. If these price expectations are 
formed on the basis of some fixed rule, we are concerned with "temporary 
equilibria" (Ref. 61), which were used to discuss the roJe of money, for 
example. As expected prices do not necessarily obtain, plans of the future 
may turn out to be not even feasible. If price expectations are formed 
endogenously, the framework of "rational expectations" has attracted much 
attention. The idea behind this is that agents fully exploit all available 
information. But as market prices reveal information, the asymmetries of 
information can be leveled out by the fact that prices become publicly 
known and, under some circumstances, Pareto optimality can be restored 
(Refs. 62, 63). In the context of this Iiterature the feasibility of monetary 
policy has been questioned quite seriously (for a discussion, see Ref. 53, 
for example). 

lt is interesting to note that most of these developments started after 
general equilibrium theory in its classical form had reached a fair Ievel of 
maturity-and with it the classical welfare theorems (Section 4.2.1). With 
its maturity its weakness became apparent. And quite a number of those 
can be organized according to the cause of failure to be able to interpret 
the support vector of Pareta optima as a sensible price system. 

4.6. Welfare Functions 

In Section 4.2.1 it was noted in passing that Pareto optima can be 
obtained by a suitable scalarization of the underlying vector maximum 
problem: Under the usual convexity assumptions each Pareto optimum ii 
can be associated with a vector of weights a E IR M such that ii solves 

max L: cx,u;(x.) s.t. a E A 
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If a society regards ii as the "best" choice, then its criterion function 
must-at least locally-look like L a,u,(x,) =: W(a). Hence, W(a) 
measures-at least implicitly-the welfare Ievel of a society attained by an 
allocation a E A and is therefore called a welfare function. This gives rise 
to an interesting interpretation of the supporting price system: the prices 
are the marginal social valuations of resources when those valuations are 
formed on the basis of W(a) (see Mas-Colell, Ref. 15, for details). 

While a specific Pareta optimum is "best" with respect to some 
implicitly defined-via the scalarization method-welfare function, there 
is no information contained in this method as to why a society should use 
this particular welfare function. Is it then conceivable that a society can 
agree upon some welfare function and then select according to this function 
a Pareta optimal state? At a sufficient Ievel of generality such an agreement 
is, of course, conceivable. Many studies, e.g., of the optimal taxation 
literature, presume that there is a scalar-valued welfare function. But as 
soon as we try to specify the principles that should rule the process of 
reaching such an agreement, we meet serious problems. In his pioneering 
study, Arrow (Ref. 64) showed that it is impossible to construct a social 
preference ordering over attainable states that satisfies some mild-looking 
requirements on the way in which the individual preference orderings
underlying u;-are reftected in this social ordering. Among the requirements 
are (1) that the social ordering should include the Pareta (partial) ordering; 
(2) that no individual should be a dictator-in tlte sense that the social 
ordering just reftects the dictator's individual ordering and (3) that inter
personal camparisans of utility Ievels are not possible, i.e., only the 
ordinal ordering should count. 

None ofthese requirements Iooks very restrictive, nor do the remaining 
two, which we omit here. The third requirement is usually justified by the 
argument that orderings are observable-via observing actual choices of 
individuals-but utility Ievels are not; and even if they were observable, 
utility is thought of as incorporating ideosyncratic aspects of a person, 
which renders comparison of utility Ievels a doubtful exercise. lt should 
be noted that the welfare function W introduced above makes use of 
interpersonal comparison of utility Ievels. 

Arrow's impossibility result has triggered a boost of contributions on 
social choice rules. Numerous variations of the result were shown. 
Possibilities of escaping the negative result were analyzed. This Iiterature 
has certainly dramatically increased our understanding of the structural 
elements of social choice. It is impossible to provide an adequate picture 
ofthese fascinating studies in the limited framework oftbis paper. But there 
are some excellent surveys available (in particular, Ref. 65), to which the 
interested reader is referred. The general message of this work seems to be 
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that there exists no way of solving the structural problern of conflicting 
interests in a general and at the same time satisfactory manner. But whether 
such a solution is satisfactory or not depends, of course, on the specific 
context in which it is sought. For some problems the majority voting rule 
seems adequate, for example. But for others it is not. 

As for the vector maximum problern of the ADM, the contributions 
of the social choice Iiterature can be seen as an attempt to select a natural 
scalarization-not necessarily linear-among the continuum of possible 
ones. This statement should be read with some care, as the "scalarization" 
studied in this Iiterature is not concerned with the provision of a function 
defined on the range of the criterion functions u,-as is usual when we 
speak of scalarization-but on the domain of the criterion functions (even 
this description does not do full justice to the generality of the social choice 
approach; e.g. Sen, Ref. 65). The result of these attempts isthat there is no 
such natural scalarization, even if we allow for a broadly generalized notion 
of scalarization. Hence, the Paretian vector maximum problem, one of the 
central structural elements of welfare economics, remains a genuine vector 
maximum problem. 

4. 7. Concluding Remarks 

Two warnings seem appropriate: First, the intention of this chapter 
made a quite selective use of related work desirable. Not all related topics 
are treated, nor are all aspects of those topics that are treated covered. The 
quoted references make a much broader spectrum ( e.g., Refs. 3-5) accessible. 
This procedure was chosen to highlight the role of the vector maximum 
problern in welfare economics: it provides a unified framework, which helps 
organizing ideas on a wide spectrum of phenomena relevant to welfare 
economics and related fields. And its mathematical structure has guided
and still does guide-intuition as to possibilities to overcome socially 
undesirable aspects of market results. 

Second, it has obviously always been tempting to some economists to 
take "policy recommendations" derived from the mathematical structure 
of Pareto optima too literally. This may be due to the fact that they are 
after all derived from an "objective" (mathematical) model. The nature of 
such an "objectivity" needs, hopefully, no comment. In any case, the 
structure of vector maxima-and mathematical structures in general-can 
only be fruitfully used as a device to organize ideas and to detect new 
structural elements or similarities. It is possible to analyze aspects of 
economic policies taking advantage of mathematical structures. But the 
overall assessment of some policy measure is quite a different matter. 
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Multicriterion Optimization in Resources Planning 

JARED L. COHON, 1 GIUSEPPE SCAVONE, 1 AND RAJENDRA SOLANKI 1 

5.1. lntroduction 

Resource planning problems present many excellent examples of why 
multicriterion optimization (MCO) can be so useful in practice. These 
problems virtually always involve a public decision-making process, and 
they virtually never can be characterized as having a single criterion. The 
protection of the environment-a particular kind of resource planning 
problem-is by its very nature a multicriterion problem: the environment 
is being "protected from" economic activities. Thus, problems in environ
mental control are born out of conflict between criteria: economic develop
ment and environmental preservation. Resource problems, in general, 
exhibit these criteria and others, such as equity in the distribution of benefits 
and costs-the dassie upstream-downstream conflict in water resource 
problems-and risk to human health. 

Resource planning problems represent a ripe area for innovation in 
and application of MCO techniques. Indeed, much of the research in MCO 
has been motivated by resource problems, and many of the techniques and 
applications have been developed and performed by engineers, economists, 
and applied operations researchers working in this field. For example, the 
economic theory that supports a multicriterion analysis of public sector 
problemswas developed in the 1950s by the Harvard Water Program (Maass 
et al., Ref. 1, and Marglin, Ref. 2) and extended and solidified in MIT's 
water program (Major, Ref. 3, and Major and Lenton, Ref. 4). Haimes et 
al. (Ref. 5) and Cohon and Marks (Ref. 6) developed the constraint method, 
Haimes et al. (Ref. 5) the Surrogate Worth/Tradeoff Method, and Cohon 
et al. (Ref. 7) the noninferior set estimation method initially for river basin 
planning problems. Major and Lenton (Ref. 4) report the first truly large
scale application of MCO to, in this case, a river basin development problern 
in Argentina in the early 1970s. 

1 Department of Geography and Environmental Engineering, The Johns Hopkins University, 
Baltimore, Maryland 21218. 
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There are many more examples of ways in which resource problems 
have challenged researchers and practitioners to extend and apply MCO 
theory, and the purpose of this chapter is to review these accomplishments. 
Our emphasis is on past contributions, but the continuing challenge of 
resource problems as a rich area for MCO research and application is also 
discussed. 

5.2. Scope of This Chapter 

The Iiterature on the use of MCO for analysis of resource and environ
mental problems is vast, justifying a book of its own. We must, therefore, 
be selective in our review of this chapter. Following a brief discussion of 
MCO techniques from the perspective of the resource planner, we review 
past work in several areas. In particular, the following resource problems 
are discussed: 

1Water Resources 
River basin development 
Reservoir operation 
Water quality control 

Energy 
Energy policy planning 
Energy facility siting 

Land Use Planning 
Forest Management 
Regional Environmental Planning 

A fairly detailed account of the analysis of the Rio Colorado in 
Argentina is provided after the review of River Basin planning. In addition, 
other areas ( e.g., acid rain), in which there is relatively little prior work of 
which we are aware, will be touched upon. Water and energy seem to have 
received most of the attention in the literature, and these areas will be 
emphasized here. Multispecies ecosystem management, an important area 
of application, is discussed in Chapter 6 of this volume. 

5.3. Multicriterion Optimization Methods 

Multicriterion analysis represents a general philosophy of design 
and planning. It differs from single-criterion design only by its explicit 
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consideration of multiple criteria. But, this is an important difference, as it 
puts the designer and planner in the more comfortable and useful position 
of providing to clients and decision makers a set of good, alternative 
solutions rather than a single, "optimal" solution. 

There is a !arge array of analytical techniques for multicriterion prob
lems. Cohon (Ref. 8) reviews many ofthe methods. Zeleny (Ref. 9) provides 
a comprehensive and excellent treatment of the entire multicriterion 
endeavor. Goicoechea et al. (Ref. 10) offer broad coverage ofthe field with 
many examples from engineering, particularly water resources. Chankong 
and Haimes (Ref. 11) include a rigorous development ofmost multicriterion 
techniques. Steuer (Ref. 12) provides an especially good and useful review 
of multicriterion linear programming theory and algorithms. We present 
below a very brief review of selected MCO techniques, emphasizing those 
that have been used in the analysis of resource problems. More detailed 
surveys are provided elsewhere in this volume. 

The !arge number of multicriterion solution methods suggests that all 
techniques are not applicable to all problems. The methods differ in terms 
of the nature of the problern and the kinds and nature of the information 
they provide to and require from decision makers. Based on these observa
tions, MCO methods are categorized below into multicriterion choice 
methods and multicriterion programming techniques. The latter category, 
which is emphasized here, is categorized further into generating techniques 
and preference-oriented methods. 

5.3.1. Multicriterion Choice Methods. Multicriterion choice methods 
are directed at problems in which there is a finite set of predefined alterna
tives or choices. For example, a highway alignment problern in which there 
is a relative handful of possible routes would be such a problem. 

There are many multicriterion choice methods, including a variety of 
scaling and ranking procedures for selecting one alternative out of the 
feasible set. MacCrimmon (Ref. 13) provides a good, concise review of 
these techniques. 

The ELECTRE method was developed by Benayoun et al. (Ref. 14) for 
the multicriterion choice problem. ELECTRE is rather involved, but it offers 
the advantages of being able to deal with qualitative criteria, e.g., aesthetic 
impacts, and of permitting inconsistencies ("intransitivities") in the way 
alternatives are ordered. Goicoechea et al. (Ref. 10) give a good description 
of the technique. 

A widely known tool for choice problems is multiattribute utility theory. 
The crux of the approach is to estimate the decision maker's value function 
(for deterministic problems) or utility function (for uncertain situations). 
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The function, defined over the criteria, serves to collapse the problern into 
one with a single criterion, the maximization of utility. Once the value or 
utility function is known, the identification of the best solution is straight
ford. Keeney and Raiffa (Ref. 15) provide a detailed discussion ofthe theory 
and estimation of multiattribute value and utility functions. The technique 
has been used to select airport sites by deNeufville and Keeney (Ref. 16) 
and power plant sites by Keeney (Ref. 17). Keeney and Wood (Ref. 18) 
demonstrated its use in water resource planning. 

5.3.2. Multicriterion Programming. Multicriterion programming 
(MCP) is a set of mathematical programming techniques directed at situ
ations in which alternatives are not known in advance. Rather, choices are 
represented by decision variables-controllable aspects of a system-and 
constraints that indicate allowable ranges for the decision variables. In 
continuous problems, the number of alternatives is infinite, and the role of 
analysis is to generate alternatives, as weil as to evaluate them. Even in 
discrete, integer programming problems for which the set of feasible alterna
tives is finite, the number of possibilities is likely to be so !arge as to be 
"infinite" for practical purposes. The distinguishing point is that, unlike 
choice methods, MCP incorporates implicitly in its constraint set the alterna
tives available to the decision maker. It is the role ofthe analyst and designer 
to formulate the model and to solve it so as to identify one or more 
alternatives for possible implementation. 

There are basically two kinds of MCP techniques: generating methods 
and preference-based methods. Generating methods have been developed 
to generate the exact Pareta optimal set or an approximation of it. Decision 
makers then choose one of the generated Pareta optimal solutions for 
implementation. Preference-based techniques attempt to quantify the 
decision maker's preferences; i.e., how they feel about the relative import
ance of the criteria. With this preference information, the solution which 
is best is then identified. 

The two sets of methods imply very different things for the respective 
roles of the decision maker and the designer or analyst. Generating tech
niques put the analyst/ designer in the roJe of information provider, and 
the decision maker is expected to make the necessary value judgments by 
selecting from among the Pareta optimal solutions. Preference-based 
methods require the decision maker to articulate his or her preferences in 
a formal, structured way. The analyst becomes a counselor, in effect. (It is 
very important to realize, however, that, though there are differences among 
multicriterion methods, all of them place the responsibility for value 
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judgments with the decision makers. This is a major improvement over 
single-criterion approaches.) 

Generating and preference-based methods both exhibit strengths and 
weaknesses for the analysis of resource problems. Preference-based tech
niques put burdens on decision makers in terms of time and by asking them 
to articulate values in a way that they may find particularly uncomfortable. 
Our experience has been that public decision makers are not enthusiastic 
ab out stating quantitative preferences, such as the monetary value of health 
risks from nuclear power. Putting this problern aside, many ofthe preference
based methods suffer from an information inadequacy; they require the 
decision maker to state preferences before he or she knows what the choices 
are, thereby stripping the analysisofthat which is of most interest to decision 
makers. 

Generating methods overcome some ofthese difficulties. The techniques 
provide a great deal of information, emphasizing the Pareto optimal set or 
the range of choice available to decision makers. The techniques also do 
not require explicit value judgments from decision makers, allowing them, 
instead, to express their values implicitly through their selection of an 
alternative. (Do not be misled. Generating techniques cannot avoid value 
judgments; they simply defer them until the choices are clear and allow 
preferences to go unspecified. We have found that this does not necessarily 
make decisions any easier, just better informed.) 

There are, however, other problems with generating techniques, not 
observed with most of the preference-based techniques. Problems with two 
or, perhaps, three criteria permit the clear presentation of choices through 
graphical means. But, what do we do with four, five, or even more criteria? 
Displaying results and making a choice become very complicated in higher
dimensional problems, increasing in difficulty approximately exponentially 
with the number of criteria. Computational costs of generating techniques 
also increase rapidly with the number of criteria. 

In sum, analysts and designers have their own multicriterion problern 
in selecting an appropriate technique. It is impossible, and undesirable even 
if it were possible, to Iabel one technique as best for all situations. Our 
practical experience has been with generating techniques, and we promote 
them as the preferred approach. We find them to be truer to the spirit of 
analysis and design: the development of insight and a better understanding 
of the problern at hand. 

The techniques cited most often in the review that follows are the 
constraint method, the weighting method, the noninferior set estimation 
(NISE) method, and various preference-oriented techniques, particularly 
goal programming. Each of these methods is discussed in detail in Cohon 
(Ref. 8) and elsewhere. 
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5.4. W ater Resources 

Water resource problems are an important application area for mathe
matical modeling generally and increasingly for optimization and multi
criterion techniques. In a recent survey of the use of mathematical models 
in the planning, design, and operation of water resource systems, Austin 
(Ref. 19) found that 85% ofthe respondents were then using mathematical 
models. MCO techniques were being used by 11% of the respondents. One 
obstacle in using mathematical models was reported to be the Iack of 
understanding of models by decision makers. It is our belief that the use 
of multiple criterion decision-making techniques tends to improve decision 
makers' understanding of the modeling process. By making tradeoffs 
explicit, MCO increases confidence in the modeling process. We expect, 
therefore, that the use of MCO in water resources will continue to expand. 

Water resource problems are generally of two types: (1) river basin 
planning and reservoir Operation problems, which are related primarily to 
quantity (too much, not enough, or bothat different times), and (2) water 
quality problems. Although quantity and quality problems are closely 
related, planning exercises tend to concentrate on one or the other, but not 
both. We treat reservoir operation as a separate area below because it has 
emerged as an important and extensively studied subarea in the water 
resources literature. 

5.4.1. River Basin Planning. River basin planning is directed at the 
development of a water body to allow the beneficial use of its water. The 
primary water uses are municipal water supply, industrial water supply 
(including cooling), hydroelectric energy production, recreation, com
mercial fishing, fiood control, irrigation, and navigation. The structural 
alternatives for meeting these demands include dams for storing water, 
hydroelectric power plants, municipal and industrial water treatment and 
distribution systems, recreational facilities, Iacks and channels for naviga
tion, and water conveyance channels for transfers not directly related to 
water uses (e.g., for interbasin transfers). Nonstructural alternatives include 
various regulatory and management procedures such as restrictions on 
location in fioodplains and peak-load water pricing to alter demand patterns. 
The emphasis in river basin planning has been and continues to be on 
structural alternatives. 

The typical questions addressed in a river basin planning study are: 
Which structures should be built and to what size? How should the system 
be operated? When should the various elements of the system be imple
mented? All of these questions are interrelated, as are the elements of the 
system. 
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The number of water uses, their inherently competitive nature, the 
uncertainty of streamftows, and the size of many river basins are manifes
tations of the physical complexity of the problem. The economic and 
political nature of river basin planning presents another and perhaps more 
intricate Ievel of complexity. The use of a river's water almost always has 
an effect that transcends the local impact ofthat water use: upstream water 
use may alter, reduce, or preclude downstream uses. Furthermore, the 
construction of all water facilities affects the environment, often in major 
and negative ways. These fundamental facts of life are at the heart of the 
multicriterion nature of river basin planning and represent major complicat
ing factors in economic analysis and political decision making for water 
resources. 

The criteria used in river basin planning must, of necessity, vary with 
the physical, economic, and political characteristics of specific river basins. 
There are, in general, three kinds of criteria that are usually present: First, 
economic efficiency, the traditional criterion of benefit/ cost analysis, is 
virtually always considered. 

Second, there are questions of distribution of project impacts-the 
classical upstream-downstream conftict-that the economic efficiency 
objective cannot address. Most rivers that are attractive for development 
ftow through many political jurisdictions and many regions, some developed 
and some depressed. Since water is an important resource for initiating and 
sustaining economic development, river basin plans must be responsive to 
the differential regional impacts of water resource development. A pure 
efficiency criterion tends to favor further development in developed regions 
since infrastructure costs can frequently be avoided. Plans that favor 
developed regions may not be consistent with federal views of desirable 
strategies for a nation's growth, and they will certainly be contrary to the 
developing region's perception of what is best. A multicriterion analysis 
that trades oft efficiency against distribution is necessary for well-informed 
river basin decision making in such cases. 

Third, the development of river basins can create environmental impacts 
that are considered by many to be undesirable. The construction of a dam 
stills a freely-ftowing river and may inundate a significant amount ofvaluable 
or potentially valuable land. Some of these effects defy monetary quan
tification. The value of a ftowing river or of indundated land may be purely 
aesthetic in nature, yet for economic efficiency, benefit/ cost analysis 
demands that these aesthetic values be quantified in monetary terms. While 
problemsoftbis sort are generally difficult to analyze, multicriterion analysis 
represents a significant improvement over a single-dimensional benefit/ cost 
analysis by allowing environmental impacts to be quantified in natural 
nonmonetary units. 
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River basin plaqning in the United States is, to our knowledge, the 
only governmental activity in the world that was formally and Iegally 
required tobe multicriterion. In the early 1960s, a cabinet-level body, the 
Water Resources Council (WRC), was formed to reconsider the methods 
and procedures of water quantity planning in the United States. After a 
decade of study and analysis the WRC (U.S. Water Resources Council, 
Ref. 20) promulgated formal procedures for multicriterion river basin 
planning. 

The so-called "Principles and Standards" developed by the WRC 
required, at a minimum, that federal river basin planning agencies, i.e., the 
Army Corps of Engineers, the Bureau of Reclamation in the Department 
of Interior, and the Soil Conservation Service in the Department of Agricul
ture, analyze two criteria in detail: one that maximizes net economic 
efficiency benefits and one that is responsive to environmental quality. The 
impacts of all alternatives on these two criteria and on regional income and 
the "social well-being" objective (a catchall for those impacts that cannot 
be put into the other three accounts), where appropriate, must also be 
measured and displayed. A full multicriterion analysis, in which the full 
range of choice is identified, is not required, but the WRC's regulations 
went weil beyond traditional benefit/cost analysis. (The U.S. Government 
reverted to single-criterion benefit/ cost analysis in 1983 when the Principles 
and Standards were replaced with the "Principles and Guidelines.") 

The Harvard Water Program pioneered the development of systems 
analysis techniques for river basin planning. Maass et al. (Ref. 1) present 
the earliest optimization and simulation models for determining "optimal" 
sizes for the major facilities in a river basin plan. Marglin, in a chapter of 
that book and in Marglin (Ref. 2), presented the economic theory that 
underlies the use of multicriterion analysis for river basin planning. 

A major extension of the early work at Harvard began at MIT in the 
late 1960s. Working on the Rio Colorado in Argentina, researchers there 
applied MCO to a large-scale river basin problern for the first time. This 
important project is discussed in Cohon and Marks (Ref. 6), Cohon (Ref. 
8), and Major and Lenton (Ref. 4) and is the subject of the case study 
presented in the next section. 

Loucks (Ref. 21) applied the STEP method of Benayoun et al. (Ref. 
14)-see also Cohon (Ref. 8)-to the development of a river basin in Africa. 
In the STEP method, an initial Pareto optimal solution is presented to a 
decision maker who indicates the amount of a criterion that he or she is 
willing to sacrifice in order to improve other criteria. This information is 
used to generate a new Pareto optimal solution, and the process continues 
until the decision maker is satisfied. 

Greis et al. (Ref. 22) developed the "Chebyshev approach" and applied 
it to seasonal water allocation problems. The technique is interactive, but 
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by finding several widely dispersed Pareto optimal solutions, more informa
tion is provided to decision makers than is usually the case in such methods. 
A weighted Chebyshev metric for finding solutions closest to an ideal 
criterion vector is the source of the method's name. 

Allam and Marks (Ref. 23) explored the tradeoffs between net benefits 
and income distribution that result from irrigation expansion in developing 
countries. They also confronted the stochasticity ofthe problern by analyzing 
resiliency, a measure of the ability of a solution to adjust to unanticipated 
changes in parameters or decision variables. 

River basin planning problems can also be analyzed with a choice 
method when several alternative plans are formulated in advance. David 
and Duckstein (Ref. 24), Gersbon et al. (Ref. 25), Nijkamp and Vos (Ref. 
26), and Massam (Ref. 27) have applied the ELECTRE method and its variants 
to the ranking of alternative river basin plans. An advantage of these methods 
is their relative computational insensitivity to the nurober of criteria. 
Gersbon et al. (Ref. 25) used 13 criteria, and Massam (Ref. 27) applied 21. 
In addition, criteria need not be quantifiable as mathematical functions. 

Several applications of MCO have focused on the tradeoffs between 
economic and environmental impacts. Major (Ref. 28) applied multi
criterion analysis to the proposed Big Walnut Reservoir in Indiana. The 
pool created by the dam would have encroached on a unique ecological 
area. Majorgenerated the range oftradeoffs between net economic efficiency 
benefits (from water supply, recreation, and flood control) and environ
mental quality measured as the acres of the unique area inundated by the 
reservoir pool. The analysis was instrumental in altering the original design 
by the U.S. Army Corps of Engineers. 

In many river basin design situations, environmental groups object to 
reservoirs because a freely flowing river will be stilled. The underlying 
concern is aesthetic in nature and in part based on the belief that any 
ecological disturbance should be avoided. Cohon et al. (Ref . .7) handled 
this kind of general environmental concern with a surrogate criterion, which 
was to minimize total reservoir capacity. The NISE method was developed 
and used to find the tradeoffs between this environmental quality objective 
and net economic efficiency benefits. 

Environmental quality is generally multidimensional, so a single 
environmental criterion may be difficult to identify without introducing 
controversial value judgments into the definition of criteria. Miller and 
Byers (Ref. 29) studied the proposed development ofthe West Boggs Creek 
watershed in Indiana. They identified 11 different environmental quality 
parameters related to the impact of sediments carried by natural runoft and 
potentially trapped in a series of proposed reservoirs. The authors took a 
multicriterion approach to avoid the monetary quantification ofthe impacts 
of the anticipated sediment Ioad. Net economic efficiency benefits were 
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traded off against an aggregate environmental quality index that attached 
equal weights to each of the 11 indices. The aggregate index was used to 
avoid the computational and display complexities associated with the dis
aggregated 12-criterion problem. Each ofthe 11 quality indices were weight
ed equally "since there is little guide for measuring the relative social 
importance of each component of the environmental quality objective" 
(Miller and Byers, Ref. 29, p. 17). The authors pointout that any weighting 
system could be used in forming the aggregate indicator, but it should be 
clear that the choice of weights may be very important. Computational 
convenience was accomplished in this case by making a possibly strong 
value judgment. 

Goicoechea et al. (Ref. 10) developed an interactive multicriterion 
technique that explicitly incorporates uncertainty. The method was applied 
to the Black Mesa region of Arizona to study the tradeoffs among livestock 
production, irrigation of selected crops, low-ftow augmentation (a strategy 
for improving water quality), sedimentation, and fish-pond harvesting. 

In a recent unpublished study, the senior author of this chapter worked 
with a team of water resource systems engineers in India to incorporate 
social and environmental impacts into river basin planning models. Many 
impacts were formulated as criteria and included in an MCO model. The 
inundation of forested Iands and habitat of endangered animal species, the 
displacement of villages, and the disruption of mineral deposit exploitation 
were among the impacts studied. The weighting method was used to approxi
mate the Pareto optimal set. 

5.4.2. A Case Study of Multicriterion River Basin Planning. In this 
section the multicriterion analysis of the proposed development of the Rio 
Colorado in Argentina is discussed. The methodology and results were 
developed over a two-year period from 1970 to 1972 in the Department of 
Civil Engineering at the Massachusetts Institute of Technology (MIT), 
under contract to the Republic of Argentina. The project is of particular 
interest since it represents one of the first attempts at MCO and planning 
for a large-scale real-world public investment problem. 

The following presentation is adapted from Cohon and Marks (Ref. 
6), Cohon (Ref. 8), and Major and Lenton (Ref. 4). 

The Problem Setting. The Rio Colorado ftows from the Andes Moun
tains in the west to the Atlantic Ocean in the east through the central portion 
of Argentina as shown in the small map in Fig. 5.1. In the )arge map of 
Fig. 5.1 one can see that the Rio Colorado ftows through or is on the border 
of five provinces: Mendoza, La Pampa, Neuquen, Rio Negro, and Buenos 



www.manaraa.com

Resources Planning 

1 

! 
CHILE ) 

./ 

0 

MENOOZA 

I 

I 

RtO NEGRO 

100 200 km 

:----- ---i 
I 

Fig. 5.1. Location map for the Rio Colorado. 

BUENOS 
AIR ES 

127 

Aires. This multiprovincial setting 1s an important characteristic of the 

planning problem. 
The Rio Colorado is a relatively small river with a mean annual ftow 

of 120m3/sec (320ore;sec), but it represents an important resource, 

nevertheless. It is the only major water resource for La Pampa and the 

southern tip of Buenos Aires province. In addition, the Rio Colorado is a 

critical factor for the existing and planned irrigation in Mendoza. The 

importance of the river's resources is reflected by the number of projects 

proposed by the provinces. There is not enough water in the river to pursue 

all of the proposed development. There is a provincial allocation problern 

here, which is exacerbated by current development patterns and by historic 

confticts over water. It is important to understand this political and economic 

background. 
Mendoza and Buenos Aires are well-developed provinces, while the 

other three provinces are less developed, particularly La Pampa, which is 

on a !arge dry plain that has supported little agricultural or other economic 

activity. The portion of Buenos Aires province in the basin includes the 
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largest existing irrigation zone on the river. Mendoza is a well-developed 
and growing province that some call the "California of Argentina." Exten
siveirrigation has been pursued around the Rio Atuel in Mendoza to support 
a major wine industry. 

The Rio Atuel has played an important roJe in interprovincial relation
ships. A careful inspection of the large map in Fig. 5.1 shows that the line 
representing the Rio Atuel becomes dashed as it enters the province of La 
Pampa. The river is indicated in this manner because it is now only a river 
bed; there is no water in the Rio Atuel in La Pampa. There used to be water 
in the La Pampa reach of the river, but extensive use by Mendoza has 
eliminated this resource for potential downstream users. This historical fact 
served to aggravate the usual upstream-downstream conftict among riverine 
provinces and tended to polarize provincial views on the desirability of 
projects in the Rio Colorado. 

The proposed projects, shown schematically in Fig. 5.2, included: six 
reservoirs for regulating the river and providing "head" (potential energy 
of stored water measured as the elevation of the water surface) for energy 
generation; five hydroelectric power plants; four irrigation zones, which 
ranged in size from 3500 to 260,000 hectares [ one hectare (ha) is 10,000 m2 

or about 2.5 acres]; and three interbasin transfers. The transferalternatives 
were particularly controversial since two of the proposed diversions would 
export up to 80% of the Rio Colorado to the Rio Atuel for irrigation and 
hydroelectric energy production in Mendoza. 

The task of the MIT group was to develop a methodology that could 
help Argentine decision makers to determine which projects to build, the 
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Fig. 5.2. Schematic representation of alterna
tives for the Rio Colorado ( Cohon and 
Marks, Ref. 6). 
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size of those projects, when to build them, and how to operate them. The 
Rio Colorado exhibits all of the complexity of the general river basin 
planning problem. Of most importance for us is the clear multicriterion 
nature of the problern manifest in the efficiency-distribution tradeoff under
lying the interprovincial conflict. 

The Model. The number of questions that must be addressed and the 
uncertainty of future streamflows preclude the use of a single mathematical 
model for river basin planning. The MIT methodology included three 
models: a screening model, a simulation model, and a sequencing model. 
Each model addresses one or more of the "which, size, operating, and 
when" questions. By using them tagether in a sequential matter, good 
reliable alternatives can be generated. 

The screening model, the only one discussed here, is a linear MCO 
model (actually, the final version of the model includes some integer 
variables) that is used to determine which projects to build and their 
appropriate sizes. The model is static so that timing issues are not captured, 
and deterministic with regard to streamflow so that operating policies cannot 
be considered. The output from the model, which is described in more 
detail below, is a set of design sizes for each proposed project in the basin. 
This "configuration" is relatively unreliable owing to the optimistic view 
of the world built into the model by our assumption of hydrologic deter
mini.sm. 

The objective function of the screening model expresses the set of 
planning objectives in terms of decision variables representing the release 
of water from reservoirs, the diversion of water out of the stream for water 
uses, the realizable production from uses to which water is allocated, and 
the location and capacities of the structural components of the river system, 
chosen from among the set of potential projects in Fig. 5.2. The constraint 
set consists of continuity constraints, which trace the flow of water through 
the river system, and constraints on each of the elements or uses of the 
system: reservoirs, irrigation, hydroelectric energy production, and inter
basin imports and exports. Each of these types of constraint is discussed 
separately below. The objectives are discussed separately after the con
straints. 

Constraint Set. Continuity constraints are included in the model to 
trace the flow of water through the river system by ensuring the conservation 
of mass at every point in the river at which water is stored, diverted, or 
imported. The basic continuity relationship can be written as 

Ss,r+t = Ss, + Q." + J"- E."- Ds, (5.1) 
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where the subscripts s and t refer to site and season, respectively. Equation 
( 5 .I) says that the storage in the reservoir at the beginning of the next season 
( S,, r+I) must equal the storage at the beginning of the present season ( S") 
plus any additions during the present season (the inflow Q,, and any imports 
Isr) minus any deductions during the present season (the reservoir release 
D,, and any diversions Esr). All of the variables except Q" represent 
decisions that are made at site s. On the other hand, the upstream flow Osr 
depends on natural streamflow and on the decisions made immediately 
upstream at site s - 1. It is necessary to express Q" as a function of these 
two effects, 

(5.2) 

where all variables are defined as before and 6.F51 represents the increment 
to natural streamflow between sites s - 1 and s. Equation (5.2) is substituted 
into Eq. (5.1), and after rearranging terms so that all decision variables are 
on the left-hand side and inputs (parameters) are on the right, we get 

(5.3) 

The storage terms S,_ r+I and S,, are expressed in cubic hectometers per 
season (hm3/season), where 1 hm3 = one million cubic meters (m3 ). All of 
the other terms in (5.3) are average flows expressed as cubic meters per 
second (m3 /sec). For dimensional consistency, the storage terms must 
be converted to cubic meters per second. This is done by multiplying 
ss,t+l and s51 by (lhm3/season) (1/k,season/sec) (106 m3/hm3)= 
(106/k,)[(m3/sec)/(hm3/season)], where k, is the number of seconds in 
season t. Multiplying this conversion factor by the storage terms in Eq. (5.3) 
gives the final form of the stream continuity constraint: 

\;/ s, t (5.4) 

There are two purely physical relationships for reservoirs. We require 
that the storage in a reservoir cannot exceed the storage capacity during 
any season t or at any site s: 

\;/ s, t (5.5) 

in which V, is the storage capacity of the reservoir in cubic hectometers at 
site s. Notice that by making V, a decision variable in the model, the optimal 
storage capacity of the reservoir can be found. 

We also need the storage-head relationship for reasons explained in 
a later section on constraints for hydroelectric energy production. The 
constraint says simply that the storage S51 is related to the height in meters 
of water behind the dam A 51 : 

S,, - u,(A,,) = 0 \;/ s, t (5.6) 
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where u 5 (Asr), a function that relates storage volumes to the water elevation 
in the reservoir, depends on the shape ofthe valley at site s. This relationship 
is generally nonlinear so piecewise linear approximations were needed to 
incorporate it into the model. 

The irrigation process is extremely complex and therefore quite difficult 
to model by linear programming. This complexity is primarily due to the 
great number of variables that affect agricultural production. Crop produc
tion depends on irrigation water volumes, temporal distribution of irrigation 
water volumes, water quality (e.g., salinity), solar radiation, precipitation, 
and a host of soil properties. Furthermore, the significance of each of these 
variables varies from crop to crop. 

What is desired in modeling an irrigation system is a production 
function, i.e., a function that relates crop yield to quantities ofwater supplied 
for irrigation. The agricultural production function, which has many 
dimensions, one for each of the variables that affect crop yield, has yet to 
be derived analytically. Indeed, the most widely used approach for 
estimating the production function has been empirical investigation. By 
observing crop yields for varying water quantities, an estimate of the 
production function is found. The basic weakness of this approach is that 
the other variables that affect the growing process vary from one observation 
to the next. However, the empirical method is the only warkable method 
that is currently available. 

Using a very simplified approach, seasonal irrigation water require
ments (IR") were related to amount of land irrigated ( L") through the 
following linear function, in which T 51 is the per unit water requirement: 

Vs, t (5.7) 

In general, the choice of which crops are to be produced can be a decision 
variable in the model. It is assumed, however, that a cropping pattern is 
chosen prior to solution of the model. The choice of crops will dictate the 
values of 7 51 to be used in the model. 

If benefits from irrigation are to be realized, we must be sure that land 
irrigated during a season L,. also receives its water requirements during 
other seasons. This is captured by computing the minimum seasonal irrigated 
land area Lsm from the constraints 

Vs, t (5.8) 

The remaining irrigation constraints represent water Iosses and flows 
through the irrigation site. One constraint relates the volume in cubic 
hectometers of water that reaches the irrigation site IRsr to the flow in cubic 
meters per second diverted out of the stream Es,: 

IRs,- (k,/106 ) (1- e,.)E,. = 0 Vs, t (5.9) 
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where Esr is a coefficient that represents the water lost in transport from the 
stream to the irrigation site, which is assumed to return to the stream. 

Another constraint relates the flow diverted for irrigation Es, to the 
flow in cubic meters per second that returns to the stream from the irrigation 
site Risr: 

RI"- (1- J-L,,)E" = 0 Vs, t (5.10) 

where 1-Lsr is the total loss coefficient for irrigation; it represents a combina
tion of the Iosses due to transport ( E,,) and consumptive use requirements 
(J-Lsr) 

All transport Iosses are assumed to return to the stream. 
The production of hydroelectric energy is a relatively well-defined 

technical process. There are only three decision variables that affect energy 
production: the flow through the turbines of the power plant, the head (i.e., 
potential energy) associated with this flow, and the capacity of the power 
plant. The relationships of these variables to energy production are the 
origins of the energy constraints. 

The first constraint is the producton function for hydroelectric energy, 

(5.11) 

where P11 is the energy in megawatt-hours (MWh) produced at site s during 
season t, e is the power plant efficiency, k, is the number of seconds in 
season t, and (2.61 x 10-6 ) is a unit conversion factor. Note that the head 
A" is related to the storage at site s at the beginning of season t, S,,, by 
the storage-head curve previously written as Eq. (5.6). 

The expression in Eq. (5.11) is nonlinear and nonseparable because 
D" and A,,, both decision variables, are multiplied together. The con
straint may be made linear by writing it as two constraints, one with an 
assumed value for the release D11 , and the other with an assumed value for 
the head A,,. After solution of the model, the assumed values D,, and A,, 
were compared to the computed values. If satisfactory agreement was not 
found, new assumed values were used and a new solution obtained. This 
iterative approach was found to converge in all cases in at most two runs. 

The only other variabletobe accounted for is the power plant capacity. 
The capacity represents an obvious upper bound on energy production, 

P,,- h,H, ~ 0 (5.12) 

where h, is the number of hours in season t and H, is the capacity of the 
power plant in megawatts (MW). Equation (5.12) will be binding only if 
the plant produces at capacity all of the time. This would be unrealistic 
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and undesirable. Therefore a Ioad factor Ysr, which is defined as the ratio 
of the average daily production to the daily peak production, is introduced 
into Eq. (5.12) to represent the daily variation in production. However, 
since P5 , is the seasonal energy production, it must be assumed that produc
tion does not vary appreciably from day to day. Equation (5.12) becomes 

P" - Y,,h,H, :;;;; 0 Vs, t (5.13) 

in which Ysr, an input parameter, can be between 0 and and is found 
from assumptions based on loading histories of similar installations and 
the generating function (base or peak Ioad) that the basin's plants will serve 
in the national transmission grid. 

Interbasin transfers are modeled simply as diversions of water into or 
out of the stream. It is required, additionally, that the seasonal transfer 
does not exceed the channel capacity. For imports, this is written 

I"- IM,~ 0 Vs, t (5.14) 

where J,, is the average import at site s during season t and IMs is the 
capacity of the import canal at site s, both in cubic meters per second. 
Similarly, for exports 

X"-XM,;;;;O Vs, t (5.15) 

where X" is the average export from site s during season t and XMs is the 
capacity of the export canal at site s, both in cubic meters per second. 

Criteria. The identification and quantification of criteria are important 
steps of a planning exercise and they have a profound effect on the nature 
and usefulness of the results. The Rio Colorado study dealt with a complex 
decision-making problern that was characterized by many decision makers 
and conflicting interests. The assumption that each provincial representative 
on an interprovincial decision-making committee would seek to secure an 
allocation most favorable to his province and the federal government's roJe 
in the process led to an initial set of two criteria. First, the maximization 
of net discounted economic efficiency benefits was defined to represent the 
nation's interest in the Rio Colorado; i.e., the water should be allocated so 
as to maximize the addition to national income. 

The mathematical form of the economic efficiency or national 
income criterion is 

maximize Z =I [I (ß:, Ps,) + ß~Lsm +I (v"Xs,)] 
s r t 

(5.16) 
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ß f and ß: are unit benefits for power and irrigation, respectively; a." 8" 
and c/J, are unit costs associated with reservoirs, power stations, and irriga
tion sites, respectively; and y~ and r! are unit costs of exports and imports, 
respectively. The coefficient v,, includes the benefits generated from irriga
tion and energy production with Rio Colorado water exported to Mendoza. 
All benefits and costs were actually time streams of future money fiows so 
the coefficients in Eq. (5.16) represent present values for thesetime streams 
obtained by applying a discount rate of 8%. It should also be noted that 
while the benefit and cost functions in Eq. (5.16) are represented as linear, 
they are, in fact, nonlinear. In particular, reservoir and power plant cost 
functions are concave, exhibiting economies of scale in their construction. 
This was captured by using piecewise linear approximations and 0-1 integer 
variables in later formulations (see Major and Lenton, Ref. 4). 

The second criterion represented an attempt to capture the concern 
over how water would be distributed among the provinces. The early results 
showed that the maximization of net economic efficiency benefits alone 
would Iead to allocations that heavily favored Mendoza and Buenos Aires 
since their relatively developed status allowed higher net benefits to be 
generated. Such an allocation was assumed to be unfair to the other three 
less-developed provinces. Accordingly, a "regional water allocation" 
criterion was established to encourage a more equal distribution of water 
among the provinces. The criterion was to minimize absolute deviations 
from an equal water allocation: The closer to equality the better. 

The mathematical form of the criterion employed average water use 
since if all provinces receive the average provincial use, then an equal 
allocation is obtained. We also aggregated Neuquen and Rio Negro into 
one region since the former has few proposed projects of its own. We shall 
define W, as the water withdrawn for irrigation in or exported to region i, 
where i = 1 for Mendoza, 2 for Neuquen-Rio Negro, 3 for La Pampa, and 
4 for Buenos Aires. The regional allocation criterion is 

4 

minimize D = L: I W, - Wl (5.17) 
1=1 

in which D is the total deviation, W, is the water used by region i, and W 
is the average regional water use, all in cubic meters per second. 

lt should be pointed out that regional income benefits could be used 
in place of water withdrawals in Eq. (5.17). Net regional income benefits 
are perhaps a more appropriate measure of the gain that each province 
realizes from an allocation. Water use was used instead because it was 
feit that withdrawal was a more meaningful measure for the provincial 
representatives on the committee. 
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Proceeding with the mathematical development, we see that the 
expression in Eq. (5.17) is an absolute value that is nonlinear and cannot 
be included directly in the linear programming model. The transformation 
that will make the inclusion of Eq. (5.17) into the model possible is 

4 

minimize D = L: ( G, + T,) 

subject to the additional constraints 

W, - W = G, - T" 

1=1 

i=1, ... ,4 

i = 1, ... , 4 

(5.18) 

(5.19) 

(5.20) 

in which G, and T; are the positive and negative deviation of W, from W, 
respectively, and only G, or T" not both, can be nonzero for each of the 
constraints (5.19). This can be seen from the form of the constraints and 
the objective function: For a given deviation G; - T;, the sum G, + T, is 
minimized when G, or T, equals 0. In standard form, with the variables on 
the left, Eq. (5.19) is given by 

W, - W - G, + T, = 0, i = 1, ... , 4 (5.21) 

Two more constraints are required before the formulation is complete. 
First, the averageregional water withdrawal must be related to the individual 
regional withdrawals: 

4 

w-~L: w.=o ( 5.22) 
1=1 

Second, each regional withdrawal must be defined in terms of the diversion 
and export variables. We get 

W,- L L(E,,+Xs1)=0, i = 1, ... '4 (5.23) 
SE R 1 1 

where R, is the set of sites in region i and E,, and X" are irrigation diversion 
and export, respectively, as previously defined. 

Results. The formulation was applied to the set of potential projects 
shown in Fig. 5.2. There are potential diversions for water use in each 
region: Exports at sites 1 and 3 in Menuoza (region 1); irrigation diversions 
at sites 7, 9, and 12 in Neuquen-Rio Negro (region 2) and in La Pampa 
(region 3); and an irrigation diversion in Buenos Aires (region 4). Regions 
2 and 3 are shown as sharing irrigation sites because of the peculiarities of 
our numbering system. It is sufficient only that we can keep track of the 
water as it is diverted to one region or the other. 
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The model written for the input configuration of Fig. 5.2, i.e., six 
reservoirs, five power plants, seven irrigation zones, two exports, and one 
import, and the assumption of three seasons, had 187 decision variables 
and 196 constraints. This is a relatively small linear program that cost less 
than $10 to solve using a commercial simplex algorithm called the Mathe
matical Programming System (MPS) on an IBM 360/165 computer in 1971. 
Since we had only two criteria, the generation of an approximation of the 
noninferior set was not computationally burdensome. 

Any of the generating techniques other than the multicriterion simplex 
method, which cannot handle a problern of this size, could have been used. 
We chose the constraint method-the NISE method had not yet been 
developed. 

The constraint method begins by optimizing each criterion individually. 
If we minimize deviations, we get D = 0, i.e., an equal water allocation. 
However, we found that there were alternate optima for D = 0; i.e., there 
are many solutions that yield an equal water allocation. Since some of these 
solutions may not be Pareta optimal, we solved the problern 

maximize Z ( x) 

subject to x e Fd, D(x) = 0 
(5.24) 

where Fd represents the original constraint set. That is, we wanted to find 
that equal water allocation that also maximized economic efficiency benefits. 
The solution gave Z = 1.8 x 10 12 pesos (103 pesos = 1 dollar at that time; 
keep in mind that this is the present value of a 50-year stream of net benefits) 
and of course, D = 0. This is our first Pareta optimal solution and is shown 
as point A in Fig. 5.3 and listed as such in Table 5.1. The D axis in Fig. 5.3 
is decreasing from the origin because we are minimizing D. 

Maximizing Z individually gave a unique optimum with Z = 
2.10005 x 10 12 pesos and D =436m3/sec. This solution is labeled J in 
Fig. 5.3 and Table 5.1. The constraint method proceeds by optimizing one 
criterion while all other criteria are constrained to values that vary through 
a range of feasible values. We selected D arbitrarily for optimization and 
constrained economic efficiency benefits: 

minimize D(x) 

subject to x e Fd, Z(x)::::: B 
(5.25) 

where B is a present lower bound on Z. With only two criteria we can 
observe that B must be less than or equal to 2.10005 x 10 12 (the maximum 
of Z) for feasibility and greater than or equal to 1.8 x 10 12 (the value of Z 
at the minimum of D that gave a Pareta optimal solution). 
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With the range 1.8 x 1012 ~ B ~ 2.10005 x 1012 determined, we chose 
a step size for the variations of B. We began with a step size of 0.1 x 1012, 

solving the problern in (5.25) for B = 1.9, 2.0, and 2.1 x 1012• This was done 
through parametric variation of the right-hand side of the constraint on Z. 
The solutions labeled B, C, and I in Fig. 5.3 and Table 5.1 were obtained. 

At this stage we had five Pareta optimal solutions: A, B, C, I, and 1. 
It was obvious from an inspection ofthe dashed curve in Fig. 5.3 that D(x) 
was changing rapidly between points C and I relative to its rate of change 
elsewhere. We then applied the constraint method again over the range of 
rapid variation by solving (5.25) with B varying from 2.05 to 2.09 x 1012 in 
steps of 0.01 x 1012• This yielded five more noninferior solutions labeled 
D-H in Fig. 5.3 and Table 5.1. This approximation of the Pareta optimal 
set, the solid curve in Fig. 5.3, was considered adequate, and the procedure 
was terminated. 

Figure 5.3 shows in a concise way the conflict between efficiency and 
distribution. As we move along the Pareta optimal set from A to J economic 
efficiency benefits continually increase at the expense of an increasingly 
unequal distribution of water. There is no point in considering solutions to 
the left of 1 since distributions with deviations greater than 436 m3 I sec will 
not yield higher economic efficiency benefits. 

It is important to consider the tradeoffs between the two criteria at the 
project Ievel. Table 5.1 lists the sizes of each project for each Pareta optimal 
solution. The water use for each region is also listed. Considering the water 

Fig. 5.3. The Pareto optimal set. 
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uses, as we move from A to G, more water is given to Mendoza (region 1) 
through the export channel at site 3 at the expense of the other regions, 
particularly La Pampa (region 3). This reallocation of water is reftected in 
the decrease in the size of the irrigation area at site 7 from 70,200 ha at 
solution A to 42,317 ha at solution G. As we move further to solution H 
the distribution becomes even more unequal, but now water use in Buenos 
Aires (region 4) is also increased at the expense of regions 2 and 3. Moving 
to I and J results in the further decrease of La Pampa's water use and a 
very rapid decline in water allocated to Neuquen-Rio Negro (region 2), 
requiring the decline of irrigation capacity at site 7 from 23,158 ha at H to 
3500 ha at J and at site 9 from 100,000 ha at H to 35,000 ha at J. Buenos 
Aires (region 4) is the beneficiary of the change in allocation: Mendoza's 
water use peaks at H and remains constant at I and J while the irrigation 
zone at site 13 increases from 126,127 ha at solution H to 173,272 ha at 
solution J. 

It is interesting that the magnitude of the changes in design capacities 
is correlated with the distance between points in the Pareta optimal set in 
Fig. 5.3. Salutions that are close together, such as D-H, give very similar 
designs. Salutions that are far apart, such as H and I, yield very different 
designs. Of course, this observation should not surprise us since the Pareta 
optimal set in objective space is an image of the Pareta optimal set in 
decision space, with the criteria serving as linear mapping functions. 

These are initial results, so definitive conclusions as to the best
compromise solution cannot be made. One can argue rather convincingly, 
however, that a solution such as H on the elbow of the curve in Fig. 5.3 
would be a good candidate. There is a wide range of weights and a !arge 
set of preference curves that would result in H as the best-compromise 
solution. 

Additional analyses, with other models and criteria, were performed 
for the Rio Colorado before a plan was selected and implemented. Major 
and Lenton (Ref. 4) provide a complete account of this project. 

5.4.3. Reservoir Operation. Reservoir operation has attracted a great 
deal of attention from the water resource systems community. Yeh (Ref. 
30) presents a comprehensive survey of models developed for reservoir 
operation. 

Majorreservoirsare usually built to satisfy several water uses. Unfortu
nately, most water uses conftict. For example, an extreme but frequently 
encountered case of competitive water uses is ftood control and municipal 
water supply. The two uses dictate opposite operating policies: One should 
keep the reservoir as empty as possible for ftood control purposes and as 
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full as possible to augment water supplies when natural flows are low. The 
problern is made even more complex by the inherent uncertainty of the 
streamflow: One can never know what the natural flow will be. 

Even apparently complementary water uses may conflict. Hydroelectric 
energy production and irrigation are both conservative uses in that water 
stored in a reservoir during wet years for use during dry years would benefit 
both uses. But during a given year, hydropower and irrigation dictate very 
different temporal patterns for reservoir releases. In fact, one of the earliest 
applications of MCO was by Thomas and ReVelle (Ref. 31), who explored 
the tradeoffs between hydropower and irrigation for the operation of the 
High Aswan Dam on the Nile River. The High Aswan Dam, in part due 
to its significance for Egyptian water use, has been the subject of more 
recent studies. Guariso et al. (Ref. 32) subdivided hydropower production 
into firm production and peak production to produce two criteria. The 
Pareta optimal set between these two criteria and the third criterion of 
irrigation water supply was approximated using the constraint method. 
Oven-Thompson et al. (Ref. 33) used the criteria originally analyzed by 
Thomas and ReVelle, but they incorporated uncertainty into the analysis. 
The resulting stochastic dynamic programming model was solved with the 
constraint method to approximate the Pareta optimal set. 

Palmer et al. (Ref. 34) used multicriterion linear programming to 
generate operating rules for a system of reservoirs in the Potomac River 
Basin. They used the constraint method to approximate the Pareta optimal 
set between three criteria: the years into the future during which the 
Washington, D.C. water supply system should be adequate (a crude measure 
of reliability), upstream water supply, and freshwater flow into the Potomac 
estuary (a surrogate for the quality of the estuary.) 

Tauxe et al. (Ref. 35) used a bicriterion dynamic program to analyze 
situations in which evaporation from reservoir surfaces is important. Yeh 
and Becker (Ref. 36) also used dynamic programming, with the constraint 
method, to examine tradeoffs among hydropower production, water supply, 
recreation, protection of fish habitat, and the maintenance of water quality. 
Guariso et al. (Ref. 37) used a heuristic approach to develop operating rules 
for Lake Corno in Italy. Can and Houck (Ref. 38) used goal programming 
for the real-time operation of reservoirs in the Green River Basin. 

A fundamental problern of reservoir Operation is the uncertainty of 
inflow into the reservoir, and MCO has been applied to incorporate the 
stochastic nature of the problern into Operating rules. Croley and Raja Rao 
(Ref. 39) used the constraint method to analyze tradeoffs between flood 
control and recreation for several sequences of possible future flows. 

More explicit models of uncertainty were suggested by Hashimoto et 
al. (Ref. 40). New measures of risk in reservoir operation were proposed. 
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Reliability, the traditional measure of system performance, is the frequency 
with which a reservoir system would fail to meet target demands. While it 
is an important indicator of system performance, reliability fails to capture 
other important aspects of reservoir operation, such as the severity or length 
of, say, a drought. Vulnerability and resiliency were proposed as new risk 
criteria to measure the severity of and time to recovery from a failure. 
Robustness-the ability of a reservoir system to adjust to unanticipated 
conditions-was also proposed. Hypothetical tradeoffs among these criteria 
were also analyzed. 

Moy et al. (Ref. 41) operationalized the criteria proposed by Hashimoto 
et al. (Ref. 40). They formulated a multicriterion, mixed-integer program
ming model. The constraint method was used to find the Pareta optimal 
set among reliability, vulnerability, and resilience for a single water supply 
reservoir. 

5.4.4. Water Quality Planning. Unlike the multiplicity of uses that is 
characteristic of river basin planning (and reservoir operation), water quality 
management concentrates on one water use: the capacity of water bodies 
to assimilate water-borne municipal, industrial, and agricultural wastes. 
Other water uses enter into the problern because poor water quality will 
make some uses more expensive, e.g., municipal and industrial water supply, 
and may even preclude others, e.g., some recreational activities and fishing. 
However, our major concern, and the motivation behind most government 
policy, seems to be the ecological threat of overloading water bodies with 
waste. 

There are both structural alternatives and management tools that may 
be used in abating water pollution. A range of generaland pollutant-specific 
waste treatment facilities and processes exist. The most important ones are 
mechanical, chemical, and biological processes for the removal of organic 
oxygen-demanding wastes. Nonstructural alternatives include effiuent stan
dards, effiuent charges, and other economic incentives. The implementation 
of nonstructural alternatives promotes the use of structural alternatives and 
encourages changes in waste-producing processes by the individual polluter. 
Most water quality plans attempt to blend tagether structural and nonstruc
tural alternatives. 

The two basic issues addressed in a water quality planning exercise 
are desirable quality Ievels irl' the stream and the Ievel of treatment each 
discharger should pursue. The first issue-required quality levels-has gen
erally been answered a priori by legislation, regulation, or current policy. 
The typical planning exercise addresses the waste Ioad allocation problern 
only. 
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Water quality planning criteria are similar to those discussed in the 
previous section on river basin planning. Efficiency, represented as the 
minimization of treatment costs, is important, as is distribution since 
upstream-downstream confiicts are still present. Of course, environmental 
quality-the primary motivation behind water quality planning-is also an 
important criterion. 

The first large-scale water quality systems analysis in the United States 
was performed for the Delaware River (Thomann, Ref. 42; U.S. Water 
Pollution Contra! Administration, Ref. 43). An early formulation yielded 
a treatment allocation that minimized total costs, but the plan was politically 
infeasible owing to distributional considerations. The formulation was 
modified (U.S. Water Pollution Control Administration, Ref. 43; Smith and 
Morris, Ref. 44) to impose more acceptable relationships among the dis
chargers' treatment Ievels. Two formulations were developed: the uniform 
treatment model (i.e., all dischargers must treat at the same Ievel) and the 
zoned uniform treatment model (i.e., all dischargers in a certain location 
with similar production processes or of a certain size must treat at the same 
Ievel). These two formulations captured a distributional concern, but the 
Pareta optimal set and the richness of the tradeoffs between efficiency and 
distribution were not generated. 

Brill et al. (Ref. 45) reconsidered the Delaware case and proposed 
metrics for a distribution criterion that allowed the explicit consideration 
of efficiency-equity tradeoffs. Three different metrics for equity were con
sidered: the minimization of deviations from the average treatment Ievel, 
the minimization of the range of treatment Ievels, and the minimization of 
the maximum treatment Ievel. The Pareto optimal sets defined over economic 
efficiency and equity, using the three alternative metrics, were generated. 
The analysis was also performed for an effiuent charge program. 

Dorfman and Jacoby (Ref. 46) analyzed a hypothetical multicriterion 
water quality planning situation using Paretian analysis-a weighting tech
nique that interprets the weights as indicators of political power to take 
into account the many interests groups that infiuence waste Ioad allocation: 
local, state, and federal officials, industrial representatives, and environ
mental groups. Each criterion in this hypothetical study measured the 
monetary impacts of a plan on an interest group. Weights that refiected 
each group's political power were attached to the criteria in order to predict 
political outcomes. 

Monarchi et al. (Ref. 47) applied an interactive technique, and Haimes 
et al. (Ref. 5) used the Surrogate Worth Tradeoff (SWT) method to study 
tradeoffs between cost and various water quality parameters in hypothetical 
river basins. Das and Haimes (Ref. 48) applied the SWT method to the 
Maumee River Basin. The criteria included economic development, soil 
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erosion, phosphorous, and biochemical oxygen demand (BOD). Olenik and 
Haimes (Ref. 49) extended the SWT method to include the hierarchical 
nature of many decision-making structures. The Maumee was also the 
subject of this application. Sawaragi et al. (Ref. 50) developed an interactive 
MCO technique for analyzing water quality control options in the Yodo 
River Basin in Japan. 

Male and Ogawa (Ref. 51) developed a diagrammatic procedure for 
displaying the tradeoffs among stream water quality, treatment costs, and 
reliability. Louie et al. (Ref. 52) addressed the difficult problern of the 
linkage between water quality and water use and the connections within 
the latter between surface and groundwater. They used the constraint method 
to generate the Pareta optimal set defined over three criteria: the cost of 
meeting water demands, the deviation from preset water quality Iimits and 
groundwater overdrafts. 

Most of the previous use of MCO in water quality planning assumed 
predetermined Iimits on water quality. However, MCO can also be useful 
when quality Ievels are not set prior to the planning exercise. Models that 
are predicated on a water quality stream standard, e.g., Thomann (Ref. 42) 
and ReVelle et al. (Refs. 53, 54), can be used to generate alternatives that 
show the tradeoffs among efficiency, distribution, and water quality. This 
could be done with the constraint method by parametrically varying the 
right-hand sides of constraints on stream parameters such as dissolved 
oxygen. A serious difficulty, however, is the !arge number of quality 
indicators that may be important. The analyst must then confront the trade
off between computational and display complexity and the prospect of 
making a potentially controversial value judgment as did Miller and Byers 
(Ref. 29), cited in the previous section on river basin planning. 

The increasing perception of the adverse effects of acid rain on aquatic 
ecosystems has led to a need to develop analysis techniques to aid in 
managing the pollutants causing acid rains. The fact that the pollutant 
sources may be located far away from the regions affected gives rise to 
interregional tradeoffs in benefits and costs associated with any pollutant 
abatement scheme. A deterministic Linear Programming Model was 
developed by Ellis, McBean, and Farquhar (Ref. 55) to investigate different 
management strategies. The models were developed to screen out a number 
of cost effective acid rain abatement strategies addressing the political and 
technological constraints. 

The treatment of wastewater creates its own environmental problem: 
the disposal of the resulting sludge. It is more accurate to say that water 
pollution control transfers an environmental problern from one medium
water-to another-land or air ( when sludge is incinerated). The problern 
of sludge disposal, though not new, has only recently attracted significant 
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interest, as majorurban areas have begun to exhaust easily available landfill 
sites. Perlack and Willis (Ref. 56) studied the problern of sludge disposal 
in Boston. They used the constraint method to generate the Pareto optimal 
set defined over net economic benefits and environmental quality criteria. 
Cluster analysis was used to prune the Pareto optimal set to reduce the 
information provided to decision makers. 

Environmental monitoring has recently attracted attention as a fruitful 
application area for MCO. Harrald et al. (Ref. 57) applied goal programming 
to the monitoring activities ofthe U.S. Coast Guard. They found preemptive 
goal programming, in which the criteria are treated Jexicographically, tobe 
incompatible with the decision makers' preference structure. Problems in 
specifying goals and weights for the criteria were encountered when non
preemptive goal programming was used. Palmerand Lund (Ref. 58) applied 
an MCO technique to the design of an aquatic monitoring network for a 
thermal power plant. They considered three criteria: cost of the network, 
statistical power, and public confidence. Recent work at Johns Hopkins 
University has explored the use of MCO in the design of sampling programs 
for stream water quality (Casman, Ref. 59) and groundwater contamination 
(Knopman, doctoral dissertation draft). 

5.5. Energy Systems Planning and Design 

The multitude of conflicting criteria that decision makers face when 
planning and designing energy systemsweil illustrates the need for decision 
tools as powerful as MCO. 

Energy planners have to choose the best mix of renewable (e.g., water, 
sun, wind) and nonrenewable ( e.g., fossil fuels, nuclear fuels, biomass) 
energy resources that can satisfy local, regional, and national demands for 
energy. Direct and indirect environmental and socioeconomic impacts may 
result during both the development and use of energy systems which exploit 
renewable and/ or nonrenewable resources. Fuel development consists of 
the exploration, extraction, preparation, and transport of energy resources. 
Fuel use involves the transformation of the energy source into the desired 
form of energy, such as electricity or steam. 

While early energy planning studies concentrated mostly on the impacts 
of individual components of energy systems, recent studies have adopted 
a systems approach to analyze the socioeconomic and environmental 
impacts of the whole fuel-to-energy cycle, from "cradle to grave." The 
systems approach to planning and design of energy-related projects has 
been required by the increasingly complex nature of the decision-making 
process. Today's decision environment has become much more complex in 
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comparison with that of what Kavrakoglu and Kiziltan (Ref. 60) call the 
"pre-1970 era". The primary reason for this can be found in the fact that 

Electrical system expansion decisions were made in the past by authorities 
designed for this purpose, and the decisions were carried out in a hierarchical 
manner. Today, the number of official and unofficial organizations that directly 
and indirectly influence power systems decisions is considerable. (Ref. 61, p. 160.) 

Recognizing the existence of a !arge number of organizations, Gros (Ref. 
62) aggregates them into four major groups: electric utilities, regulatory 
agencies, environmentalists, and local interests. Each of these groups takes 
a different stand with respect to socioeconomic, environmental, health, and 
safety impacts of energy systems, as weil as with respect to their technical 
feasilibity and capability to satisfy energy demand. The decision problems 
that arise from the highly confticting nature of each group's criteria demand 
a multicriterion analysis. 

The increased complexity of the decision-making process for energy 
systems planning is firmly rooted in the law. The National Environmental 
Policy Act or "NEPA," passed in 1970, provided just the demarcation in 
time alluded to by Kavrakoglu and Kiziltan. Under NEPA, all projects 
either funded in part by or subject to the regulations ofthe U.S. Government 
must be reviewed for their environmental impact. NEPA provided the basis 
for environmental impact Statementsand interjected adefinite multicriterion 
ftavor into major facility planning. 

The remainder of this section focuses on applications of multicriterion 
decision making to the problems of energy policy planning and energy 
facility siting, the two areas that have seen significant use of MCO. 

5.5.1. Energy Policy Planning. Wood, coal, oil, gas, solar, and elec
tricity are some of the energy forms that can be used to satisfy the demand 
for energy-intensive services such as space heating, transportation, and 
industrial production. Technical, political, social, economic, and environ
mental constraints challenge energy policy planners to select the correct 
mix of these energy forms. Uncertainties in the input data and the need to 
consider the effects of the chosen policy over a lang planning horizon also 
complicate the decision-making process (Evans et al., Ref. 63). 

Several models have been developed for energy policy planning. While 
early applications have been predominantly single criterion (minimization 
of annualized system costs), it is now recognized that several criteria need 
to be incorporated in models to achieve a more balanced perspective on 
the energy system (Zionts and Deshpande, Ref. 64). Multicriterion models 
provide decision makers with information on the tradeoffs between the 
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criteria-indispensable information for understanding the complex nature 
of the energy planning problem. 

Siskos and Hubert (Ref. 65) have surveyed a !arge number of studies 
that compare impacts of different policies on the basis of several criteria. 
The variety of criteria chosen for these comparisons illustrates the multi
plicity of the approaches to energy planning. lt also reflects the often 
conflicting nature of the obstacles to be overcome by the decision maker. 
Factors that need to be considered at the planning stage include capital 
and operating costs of the whole fuel-to-energy cycle for each possible 
scenario. In the U.S., for example, although coal is more readily available 
than oil, decision makers must weigh the cost implications of a policy that 
favors coal-generated electricity consumption to oil use: Substitution of 
coal-derived electricity for oil in space heat and process heat sectors requires 
more capital than direct oil use (Zionts and Deshpande, Ref. 64). 

Choosing a mode of energy production often requires the comparison 
of economic and environmental impacts. For example, the increase in the 
cost of imported oils prompted a shift in U.S. energy policy toward relying 
more on domestic energy sources such as coal. Decision makers considered 
possible impacts on the country's balance of payments, but the improvement 
of the balance of payments had to be weighed against the detrimental 
environmental impacts of burning more coal. 

Each mode of energy production presents different health hazards and 
envil:onmental risks. Individual workers and generat populations are 
exposed to the hazards associated with normal operating conditions of all 
the components ofthe fuel-to-energy cycle, as well as to the risk of accidents. 
Short- and long-term environmental effects are also associated with each 
mode of energy production. Consumption of clean renewable energy sources 
such as hydro, solar wind, and geothermal results in the least direct and 
indirect environmental hazards. 

Another factor of considerable importance in energy policy planning 
is the capability of the chosen mode of production to meet the demand for 
energy. The decision maker is concerned with developing the mode of 
energy production that is most functional from the point ofview oftechnical 
feasibility, availability of resources, and preservation of supplies (Siskos 
and Hubert, Ref. 65). Other factors which need to be weighed during the 
decision making process are the reliability of the energy system and its 
vulnerability to sabotage. 

Because the planning horizon for energy policies extends over several 
years, the uncertainties associated with the input data available to the 
decision maker, and consequently the inherent risks, can be quite !arge 
(Evans et al., Ref. 63). Suchinput data include demand for electricity, the 
economic and technical characteristics of generating units, construction 
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Iead times, shifts in governmental regulations, and market availability of 
energy sources. 

5.5.2. Energy Facility Siting. Among energy system planning issues, 
facility siting has attracted the most attention from the systems analysis 
community. It is an important subarea of the more general problern of 
facility location, an area with a !arge and rich Iiterature. In this section we 
focus on research on energy facility siting conducted at the Johns Hopkins 
University, a Ieader in this kind of analysis. The work and this review cover 
examples of the three principal activities of an energy system: conversion 
and generation (power plant siting), transmission and distribution (natural 
gas pipeline routing), and management and disposal ofwaste (nuclear waste 
routing and storage Iocation). The interested reader should also see Hobbs 
(Ref. 66), who has reviewed the power plant siting Iiterature. 

5.5.2.1. Power Plant Siting. Several factors are critical in power plant 
siting: systems costs, environmental impacts, socioeconomic impacts, health 
impacts, and safety. The degree to which each of these issues affects the 
Iocation decision is dependent on the type of energy resource utilized by 
the power plant. For example, the environmental impacts of burning coal 
are more severe than those of burning natural gas, or of utilizing renewable 
resources such as sun and wind. Similarly, health and safety issues are 
crucial in Iocating nuclear power plants. Considerations about the major 
issues of the system costs, safety, and environmental, social, and health 
impacts strongly influence power plant siting decisions. A review of the 
conflicting nature of the criteria that today's decision makers associate with 
these issues follows. 

System Costs. As pointed out by Cohon et al. (Ref. 67), total system 
costs are very sensitive to power plant Iocation, and for this reason they 
have often been the major (and until recently, the only) driving factor in 
the siting process. Among the several components that make up total system 
costs, location-dependent costs are of particular interest to planners. 

Location-dependent costs include the cost of fuel transportation from 
major processing/ storage facilities to power plant locations. For example, 
this factor favors the proximity of coal-fired power plants to coal fields or 
to coal-handling coastal facilities to which coal is shipped by barges or 
ships. Other location-dependent cost components identified by Cohon et 
al. (Ref. 6) are transmission Iine construction costs, and transmission energy 
lasses. On the basis of these factors, power plants should be located as 
close as possible to Ioad centers. 
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Environmental and Socioeconomic Impacts. The environmental 
impacts considered when locating power plants include those on local and 
regional air quality, and water quality and quantity. While some of these 
impacts can be readily quantified, others can be addressed only in terms 
of a more qualitative approach. 

Cohon et al. (Ref. 67, 68) report on a linear program formulated to 
explore the tradeoffs between economic and environmental criteria. The 
constraint and weighting methods were used to examine tradeoffs among 
fuel transportation costs, transmission costs, impacts on water quantity in 
local streams, and air quality in regional airsheds. They also dealt with 
some environmental impacts that are inherently difficult to quantify. For 
example, constraints were used to place upper bounds on the total generating 
capacity that could have been sited in locations along the Chesapeake and 
Delaware Bays, two important estuaries along the Atlantic coast. 

This type of constraint was used to represent the widely held belief that the 
Bays, though !arge, are crucial and fragile ecological systems that have a limited 
capacity to assimilate the effects of shoreline power plants. (Cohon et al., Ref. 
67, p. 11.) 

By varying the bound on allowable capacity near the Bays, a tradeoff 
between cost and this surrogate for ecological quality can be obtained. 

Plant location may also have important local economic and social 
effects. The construction and operation of a major energy facility may stress 
local public services, result in a lag of revenues over service demands, and 
disrupt the local social structure. Keeney and Nair (Ref. 69) applied multiat
tribute decision analysis to siting power plants in the face of these and 
other impacts. 

Public Health and Safety Issues. Although public health and safety 
issues present a major inftuence in locating power plants which utilize any 
source of energy, it is in the decision process of siting nuciear power plants 
that these issues have received the most attention. 

The proximity of populations to nuclear power plants has become a 
noneconomic siting consideration of great concern, especially in light of 
the two recent, severe nuclear accidents at Three Mile Island and Chernobyl. 
A way to address the public health and safety issues related to nuclear 
power plant siting is to minimize the population exposure to nuciear risks 
by Jocating plants away from sites with high population density. But locating 
plants away from Ioad centers results in higher energy transmission costs, 
and other environmental and socioeconomic costs. Cohon et al. (Ref. 70) 
used MCO to address these tradeoffs. 

The basic question addressed by Cohon et al. (Ref. 70) is: How much 
would the cost of a regional electric power system increase if nuclear power 
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plants were sited in more remote areas? Two criteria were included in a 
multicriterion linear programming model: The minimization of location
dependent costs, and the minimization of the population close to nuclear 
reactors. 

The conflict between the two criteria is apparent. The solution that 
minimizes costs locates plants close to highly populated Ioad centers, so 
that transmission costs are kept down. On the other hand, the solution that 
minimizes population proximity Ieads to high er transmission cost. However, 
in the case study in Cohon et al. (Ref. 70), the extent of the cost increase 
was relatively low when population proximity was significantly reduced. A 
tradeoff curve between the two criteria, generated with the constraint 
method, shows that population proximity to nuclear power plants can be 
reduced significantly with a very small penalty in increased costs. Interest
ingly, Cohon et al. (Ref. 70) found that existing siting policy, reftected in 
past utility siting decisions and future plans, was very close to the point on 
the tradeoff curve that minimized system cost and maximized risk to the 
population. This underscores the fact that, to the present, the siting process 
has emphasized cost minimization and has done an excellent job of optimiz
ing that criterion. But, with increased sensitivity to public health and safety, 
some adjustment of this policy is inevitable. The cost consequences of these 
adjustments should not, however, be !arge. 

5.5.2.2. Natural Gas Pipeline Routing. Energy distribution and trans
mission offer another fruitful area for MCO. The application discussed here 
is the routing of a pipeline system for bringing to shore natural gas ( or 
petroleum) from deposits on the outer continental shelf ( OCS) in the 
Atlantic Ocean by Engberget al. (Refs. 71, 72). In addition to cost, several 
environmental criteria were found to be important. 

Environmental problems can occur at several points in a pipeline 
system: at input facilities, along the length of the pipeline, at pumping 
stations, or at terminal facilities. Direct impacts of fuel pipelines follow 
chronic or accidental spills that may arise during the Operation ofthe system. 
Indirect impacts, due to construction and decommissioning of pipelines, 
arise primarily from the movement of soil causing changes in hydrologic 
conditions, which, although quantitatively minor, can have major effects 
on sensitive aquatic environments. Trench digging, pipeline laying, and 
other construction activities also have adverse aesthetic impacts on wetlands, 
forested land, and developed land areas through which the pipeline system 
runs. 

Past experience with OCS development has suggested that it is far 
more economical to protect environmental and socioeconomic balances at 
the planning and design stages of the project than to attempt to eure the 
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damages after the project is completed. Multicriterion analysis assists 
decision makers in capturing, at the planning stage, the connection between 
the location of the several components that make up the offsbare and 
onshore pipeline system and the resulting environmental, social and 
economic impacts on the utility corridors. 

A potentially controversial step in many MCO applications is the 
quantification of the criteria. This was a particularly challenging step in the 
analysis by Engberg et al., which relied heavily on surrogate criteria to 
represent complicated ecological and socioeconomic impacts. For the 
onshore portion of the pipeline system, four criteria were formulated. 

1. Minimize corridor center line length (a proxy for construction and 
operating costs of the pipeline). 

2. Minimize wetlands area in the corridor (a proxy for pervasive 
modification of the wetland ecosystem, and for asesthetic impacts). 

3. Minimize forested land area in the corridor (a proxy for aesthetic 
impacts and effects on the ecologically sensitive Pine Barrensregion 
of New Jersey). 

4. Minimize developed and developing land area in the corridor (a 
proxy for temporary disruption from construction, and potential, 
Iang-term land use conflicts). 

Conflicts between the four objectives were apparent. For example, the 
rautethat minimized the impacts from crossing forested area also maximized 
the system costs as weil as the impacts on wetlands and developed areas. 
Similarly, the raute that minimized the impacts on developed land also 
maximized the impacts on forested areas and did quite poorly in terms of 
wetland impacts and system costs. These and other tradeoffs were explained 
by generating Pareta optimal solutions with the weighting method applied 
to a multicriterion integer program. 

In the offsbare portion of the pipeline system more than a dozen impacts 
ofthe pipeline on the ocean environment were identified. Here again, simple 
surrogates were used to represent complicated physical and ecological 
impacts. The very !arge number of criteria presented problems in computing 
an adequate representation of the Pareta optimal set and in displaying the 
results. 

5.5.2.3. Location of Away-from-Reactor Spent Fuel Storage 
Facilities. The back-ends of energy fuel cycles present problems in the 
disposal of waste materials: flyash and scrubber sludge from coal-fired 
plants and spent nuclear fuel from nuclear plants. The case of spent fuel 
is a particularly controversial problem, one that has generated a great deal 
of debate in the United States and Western Europe. 
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Cohon et al. (Ref. 70) analyzed the option of away-from-reactor (AFR) 
facilities-above ground buildings for temporary storage of spent fuel. There 
are three interrelated aspects of this problem. First, sites for the AFR 
facilities must be identified. Since relatively few AFR facilities will serve 
reactors in several states, the location problern has a regional dimension. 
Second, decisions must be made to assign the spent fuel from a reactor to 
one or more AFR facilities. The third phase ofthe planning process consists 
of choosing the routing of spent fuel shipments. An AFR storage facility 
location model must capture the interconnected nature of these three plan
ning phases of the problem, since "the choice of AFR sites depends on 
which reactors are assigned to them, which, in turn, depends on routes for 
spent fuel shipments from reactors to AFR facilities (Ref. 73, p. 2). Cohon 
et al. (Ref. 70) developed a methodology that included MCO models to 
do this. 

Two criteria were minimized: total ton-miles of spent fuel shipments 
(a surrogate for cost) and the total nurober of people along shipping routes 
(a crude surrogate for risk and public acceptability). A specialized algorithm 
was developed to find all Pareto optimal solutions in this integer program
ming problem. 

5.6. Land-Use Planning and Land Acquisition 

That uses of land may confiict is probably obvious to anyone who has, 
for example, lived or just stayed next to a highway or an industrial area. 
The motivation for the planner is to create a plan for the use of land which 
will promote compatibility among uses while allowing for economic growth 
and transportation efficiency. This is a difficult problern with criteria that 
are hard to quantify and a complex decision-making process that may be 
poorly defined. 

Bammi and Bammi (Refs. 73, 74) and Bammi et al. (Ref. 75) used 
MCO to develop land use plans in Illinois. They identified four criteria: 
Minimization of confiict between land uses; minimizatrion of the travel 
distance of new trips to the existing transportation network; maximizing 
"fiscal soundness"; and minimization of environmental impact. The weight
ing method was used to approximate the Pareto optimal set. The authors 
point to the participatory nature of their modeling process as an important 
ingredient of their success. Decision makers and the public gained insight 
and created support through their participation in the analysis. 

Barber (Ref. 76) used MCO to study a hypotheticalland-use planning 
problern in Wisconsin. He quantified three criteria: Minimization of land 
development costs; minimization of energy consumption used in transporta-
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tion; and maximization of access to other activities by the residential 
population. An interactive technique for the analysis was presented. 

A more specific version of the land-use planning problern is the "land 
acquisition" problem. Rather than working at the scale of a !arge region, 
the land acquisition problern focuses on the creation of a unit of land from 
smaller subunits for a specific purpose, e.g., a park or a residential develop
ment. The problern presents many interesting complications in formulation 
and solution. 

Wright et al. (Ref. 77) formulated a multicriterion integer program for 
the land acquisition problem. The principal criteria were the minimization 
of cost and the maximization of compactness ofthe acquired land (modeled 
as the minimization of gaps in the acquired area). In addition, total area 
acquired can also be treated as a criterion. They developed a specialized 
algorithm for finding the exact Pareto optimal set. Problems can be solved 
that are much !arger than those solvable with general purpose multicriterion 
integer programming algorithms. 

Gilbert et al. (Ref. 78) formulated a multicriterion integer program to 
locate potential sites for a residential development in Tennessee. In addition 
to the criteria studied by Wright et al., Gilbert et al. included proximity to 
desirable and undesirable land features. A special interactive solution tech
nique, which uses the constraint method for the solution of subproblems, 
was developed. 

5.7. Forest Management 

The management of forested areas can be viewed as a specific version 
of the land-use planning problem: an area with a specific attribute (forests) 
is subject to competing uses ( e.g., timher production, fuel wood, hunting, 
and other recreational uses). Relatively few applications of MCO to forest 
management have been reported recently, but the growing concern over 
deforestation in developing countries may Iead to more interest in MCO 
methods for forest problems. 

Steuer and Schuler (Ref. 79) identified five criteria based on desirable 
Ievels of timber production, dispersed recreation, two types of hunting, and 
grazing. Several management options, related to the species of trees and 
the frequency with which they are cut, were identified for the Mark Twain 
National Forest in Missouri. An interactive MCO technique was developed 
and applied. 

Allen (Ref. 80) studied forest management in Tanzania where the 
demand for fuel wood required the central government to determine: loca
tions for new tree plantations, those particularly valuable natural forests 
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that should be preserved, and management policies for the remaining natural 
forests and the plantations. Two criteria were identified: the cost of wood 
production and the cost of transporting wood. The NISE method was used 
to approximate the Pareto optimal set. 

Mattheiss and Land ( Ref. 81) considered the more specific problern of 
tree breeding, an issue that is usually treated only implicitly in many forest 
management analyses. The criteria of their multicriteria linear program 
represent the desirable traits of the trees, e.g., growth rate, nut yield, and 
winter tolerance. A multicriterion simplex method was used to find Pareto 
optimal breeding strategies. 

5.8. Regional Environmental Planning 

Environmental planning represents the broadest and, perhaps, the most 
ambitious use of MCO in resource planning. The general problem, though 
it may take several specific forms, is to determine, as in land-use planning, 
the location and scale of activities that affect the environment and the nature 
and Ievel of services and controls to be implemented. The problern may be 
defined for a "region" assmallas a local jurisdiction or as !arge as a nation, 
or even the world. 

Much of the early work on the use of MCO in regional environmental 
planning was done by researchers in Japan. Sawaragi et al. (Ref. 50) 
developed a multicriterion control model to capture the dynamic nature 
and the linkages of a simple, hypothetical ecological system. Seo and Sakawa 
(Ref. 82) analyzed a problern in the Osaka region in which a regional 
authority must coordinate environmental planning by local subunits. They 
developed the "Nested Lagrangian Multiplier" method to study the prob
lern. The technique exploits partial preference information. Kitabataka et 
al. ( Ref. 83) used hierarchical goal programming to determine regional 
population redistribution with regard to environmental and economic con
cerns. The criteria were maximization of water quality and land quality and 
minimization of the cost of shifting populations. Ridgley (Ref. 84) used a 
similar approach, but he incorporated a simulation model into the 
methodology. 

Another center for MCO in regional environmental planning seems to 
be the Netherlands. Peter Nijkamp and his colleagues (van Delft and 
Nijkamp, Ref. 85, and Hafkamp and Nijkamp, Ref. 86) have developed 
models and techniques for the analysis of linked environmental and 
economic planning problems in regions. (Also see Hafkamp, Ref. 87.) 
Spronk and Veeneklaas (Ref. 88) used interactive goal programming to 
analyze economic development seenarios for all of the Netherlands. 
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5.9. Summary and Conclusions 

Resource problems present an important and challenging area for MCO 
research and application. The problems in reality almost always exhibit 
multiple criteria. MCO "generating techniques," especially the weighting 
and constraint methods, have been used most frequently, probably as a 
result of the complexity of public decision making. 

The number of applications of MCO to resource problems, though 
already impressive, will surely grow and probably at a faster rate. This rate 
will be affected by progress in three important areas of research. First, the 
identification and quantification of criteria has received little formal atten
tion in the literature. Yet, this is a crucial first step in any analysis. It is 
also a difficult step in resource problems for which criteria are often fuzzy 
or inherently qualitative, e.g., aesthetic value of a natural environment. 

Second, the analysis of resource problems would benefit from research 
on MCO techniques. Generating techniques are needed to approximate 
efficiently the Pareta optimal set defined over several (i.e., more than three 
or four) criteria. Preference-ariented techniques that are sensitive to the 
nature of public decision-making processes would also be useful. 

Third, we need research on the relatively unexploited area of computer 
graphics and its use in displaying multidimensional information. This is an 
exciting area of research that should pay important dividends for the use 
of MCO in the analysis of resource problems. 
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Renewable Resource Management 

THOMAS L. VINCENT1 

6.1. Introduction 

Consider a multispecies ecosystem (e.g., predator-prey) that is 

exploited by different groups of harvesters. Each group will concentrate on 

a single species. The operation is to be directed by a manager who must 

set rules for the maximum level of harvesting by each group of harvesters. 

The manager must set these Iimits without knowing the specific details of 

how the harvesters may actually operate under these rules, except that it is 

assumed that the harvesters will not violate the maximum Iimits. The 

manager's objective is to "maximize" the harvested yield for each species 

without having any ofthem become endangered by being driven to unaccep

tably low population Ievels. 
Three factors are involved. They are stability, vulnerability, and 

optimization. The maximum harvesting Iimits as set by the manager and 

any actual harvesting program operatingund er these Iimits must not produce 

an instability in the system that would result in the extinction of a species. 

Indeed, even if the system is stable under harvesting, it should satisfy an 

additional vulnerability requirement that none of the species will become 
endangered. Finally, with these requirements satisfied, the harvesting Iimits 

should provide for an opportunity to attain an optimum return of profit or 

yield. 
Simultaneaus control ofboth species in a Lotka-Valterra predator-prey 

system model has been previously investigated by Goh et al. (Ref. 1), Vincent 

et al. (Ref. 2), Vincent (Ref. 3), and others. May et al. (Ref. 4) and Beddington 

and May (Ref. 5), using a new model somewhat akin to the Lotka-Valterra 

system, examined the consequences of simultaneaus constant-effort harvest
ing of both the prey (Krill) and the predators (Baleen Whales). Fishing 

efforts were restricted to values that would yield positive equilibrium 

1 Department of Aerospace and Mechanical Engineering, University of Arizona, Tucson, 

Arizona 85721. 
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populations for both species. Within these Iimits, the model yields stable 
equilibrium solutions under any constant-fishing effort. The problern of 
choosing a fishing effort for each fishery to maximize yield at equilibrium 
was addressed, and it was clearly demonstrated that the concept of maximum 
sustainable yield (MSY) used in single-species models is not directly appli
cable to the multispecies situation. 

The stability of two-species predator-prey systems is often studied 
using the graphical techniques of Rosenzweig and MacArthur (Ref. 6). 
These methods have been extended to biologically exploited systems ( e.g., 
herbivore or vegetation, Noy-Meir, Ref. 7 and paramecium on yeast, 
Rosenzweig, Ref. 8). Extension of these techniques to a game theoretic 
analysis of human-exploited systems will prove to be useful here. The 
stability of a predator-prey system under constant-rate harvesting has been 
investigated by Brauerand Soudack (Ref. 9) using models associated with 
the state space properties of the solutions. The instability of constant-rate 
harvesting in some models has been noted by Goh (Ref. 10) and Beddington 
and May (Ref. 11). A constant-harvest analysis will also be used here for 
the investigation of the local stability of equilibrium points. 

For a given dynamical model of a prey-predator system, suppose that 
all possible positive equilibrium solutions under specified constant harvest
ing are determined. For each equilibrium solution, there corresponds a 
sustainable yield for both the prey and predator. The particular equilibrium 
solution that corresponds to the "maximization" of these yields isaproblern 
in continuous static game theory (Vincent and Grantham, Ref. 12). There 
are several solution concepts that are applicable to multispecies harvesting. 

Any solution concept can be used to select a tentative Iimit for the 
intensity of harvesting. lf a constant-harvesting game solution results in 
population Ievels sufficiently high so that none of the species are considered 
endangered, then this solution is taken as a tentative Iimit for the intensity 
of harvesting. This Iimit remains tentative until the dynamical aspects of 
the system are properly assessed. That is, any tentative solution for harvest
ing Iimits obtained by assuming constant harvesting must not allow any of 
the species to become endangered under an arbitrary harvesting program 
( e.g., nonconstant) satisfying the tentative Iimits. 

When harvesting is not constant, the problems associated with equili
brium point stability are replaced by problems associated with vulnerability. 
Even ifthe tentative solution is dynamically stable with respect to a constant
harvesting program, it may be possible to endanger one or both of the 
species with a non-constant-harvesting program. One can check the tentative 
solutionunder a non-constant-harvesting program by using the vulnerability 
method of Goh (Ref. 13) based on global Liapunov stability analysis 
( LaSalle and Lefschetz, Ref. 14) or the vulnerability method of Vincent and 
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Anderson (Ref. 15), which is based on controllable set theory (Grantham 
and Vincent, Ref. 16). The latter method is used here. The vulnerability 
analysiswill demonstrate that tentative solutions obtained from the constant
harvesting program analysis will often not satisfy an endangered species 
requirement, so subsequent adjustment to the harvesting Ievels as obtained 
from game theory would be necessary. 

In order to demonstrate most simply the relationships between a con
stant-harvest game theoretic analysis, stability, and vulnerability, the follow
ing analysis will first be restricted to a general two-species model and then 
further restricted to a specific two-species predator-prey model. 

6.2. Stability 

Consider the following qualitative two-species model subject to har
vesting: 

X1 = gl(x1, X2)- ud1Cx1) 

X2 = g2(x1, x2) - Uzg2(x2) 

(6.1) 

(6.2) 

where o denotes differentiation with respect to (nondimensional) time r, x 1 

is the appropriate characterization of the first species' population density, 
and x2 is the appropriate characterization of the second species' population 
density. The combination u1g1(x1) and u2g2(x2) represents the rate at which 
each species is harvested. The variables u 1 and u2 represent control inputs 
by the harvesters of the first species and second species, respectively. There 
are several harvesting possibilities for g1( ·) and g2 ( • ). For example, if 
g, ( x;) = 1, i = 1, 2, then the controls u, correspond to rate harvesting; if 
g.(x;) = x., i = 1, 2, then the controls u, correspond to effort harvesting. 

It is assumed that there exist nonnegative constant values ofthe controls 
suchthat a positive equilibrium solution exists for Eqs. (6.1) and (6.2). At 
such an equilibrium point, the steady state yields h1 and h2 are given by 

h1 = U1g1(x1) = g1(X1, Xz) 

hz = Uzgz(Xz) = gz(XI, Xz) 

(6.3) 

(6.4) 

Given the initial state and specification of the control, the dynamical 
model as given by Eqs. (6.1) and (6.2) yields a system trajectory in the 
two-dimensional (x1 , x2 ) state space. Equilibrium corresponds to those 
points in state space where, under constant control, the rate of change of 
x 1 and x2 is zero. More specifically, those points in state space for which 
x1 = 0 for a constant u 1 are called the / 1 isocline, and those points in state 
space for which x2 = 0 for a constant u2 are called the 12 isocline. If for 
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given u1 and u2 these two isoclines intersect, then the point of intersection 
is an equilibrium point for the system. The set of allnonnegative equilibrium 
points associated with nonnegative controls is designated by X. The corre
sponding control set is designated by U. It is assumed that when u1 = u2 = 0, 
the 11 and 12 isoclines intersect at positive values for x 1 and x2 • 

Suppose that u 1 and u2 E U have been specified and positive equili
brium values for x 1 and x 2 have been determined. A system trajectory in 
the neighborhood of the equilibrium point may be determined from the 
linear perturbation equation to Eqs. ( 6.1) and ( 6.2) 

0 (agl agl) agl OXI = -- ul- oxl +-8x2 
axl axl ax2 

(6.5) 

0 ag2 (ag2 ag2) 8x2 = -8x1 + -- u2 - 8x2 
axl ax2 ax2 

(6.6) 

where 8x1 and 8x2 represent small deviations in the equilibrium values of 
x 1 and x2 and all partial derivatives are evaluated at the equilibrium values 
of x 1 and x2 • The local stability of the equilibrium point may be examined 
by calculating the eigenvalues of the coefficient matrix. The eigenvalue 
equation is of the form 

A 2 - bA + c = 0 (6.7) 

where 

Stability requires both b < 0 and c > 0. The condition b < 0 requires that 
the divergence of the total rate of change of the species as defined by Eqs. 
( 6.1) and ( 6.2) be negative at the equilibrium point, whereas the condition 
c > 0 requires that the slope of the 11 isocline be less than the slope of the 
12 isocline where they intersect (i.e., at the equilibrium point). Equality for 
b = 0 and c = 0 will generally divide the positive orthant into a nurober of 
regions, as is best illustrated by a specific example. 

The following model is based on one used by May et a/. (Ref. 4). Let 
N 1 represent the prey population and N 2 represent the predator population. 
The dynamics of the system are given by 

N1 = r1 N 1(1- N 1/ K- aN2 /r1)- r1u101(N1 ) 

N2 = r2N2(1 - N2/ aN1)- r2u202(N2) 
( 6.10) 

( 6.11) 
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where r1 is the intrinsic growth rate of the prey, u1 is the intensity of prey 

harvesting [rate harvest if 01(N1 ) = 1; effort harvesting if 01(N1 ) = N 1], r7 

is the intrinsic growth rate of the predator, and u2 is the intensity of predator 

harvesting [rate harvest if 02 ( N 2 ) = 1; effort harvest if 82 ( N 2 ) = N 2 ]. The 

dot ( ") refers to differentiation with respect to time t. The model includes 

three additional constants: K ( carrying capacity ), a, and a. 

The model is nondimensionalized by setting x1 = Nd K, x2 = N 2a/ r1 , 

y = r1/ aaK, T = tr1 , and ß = r2 / r1 to obtain 

X1 = x1(1 - X1- x2)- ulgl(xl) 

Xz = ßx2(1- yx2/x1)- u2g2(x2) 

(6.12) 

(6.13) 

where o denotes differentiation with respect to nondimensional time T, 

gl(xl) = Od K, and izCx2) = ßa02/ r1. 

Rate Harvesting. Underrate harvesting, 81(N1) = 02(N2 ) = 1 so that 

g1 (x1) = 1/ K and g2(x2 ) = ßa/ r1 • The equilibrium points as obtained from 

Eqs. (6.12) and (6.13) are given by 

X1 (1 - x1 - x2) - u1/ K = 0 

ßx2 (1 - yx2 / x1) - u2ßa/ r1 = 0 

(6.14) 

(6.15) 

Sinc$! u1 ~ 0 implies x1 (1 - x1 - x2 ) ~ 0 and u2 ~ 0 implies ßx2 (1 -

yx2 / xd ~ 0, it follows that the additional conditions x1 > 0 and x2 > 0 will 

yield the set of nonnegative equilibrium points defined by 

X= {(x1, x2) E R 2 11- x1- x2 ~ 0,1- yx2 /x1 ~ 0, x1 > 0, x2 > 0} (6.16) 

The corresponding control set is given by 

U = {(u1 , u2 ) E R 2 IO ~ U 1 ~ K/4, 0 ~ u2 ~ r1(1- 8)[1- y(l- 8)/8]/a} 

(6.17) 

where 8 = [y/(1 + y)] 112• 

In this case, not all equilibrium points in X are asymptotically stable. 

From (6.8) and (6.9) we obtain 

b = (1- 2x1 - x2) + ß- 2ßyx2/x 1 (6.18) 

c = ß(l- 2x1 - X2 - 2yx2/x1 + 4yx2 + 2yxUx1 + yx~/x1 ) (6.19) 

Figure 6.1 illustrates that portion of X that satisfies b < 0 and c > 0 

for ß = 0.1 and y = 1. Only in this region are the equilibrium points 

asymptotically stable. 
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EffortHarvesting. Undereffortharvesting, 01(N1) = N 1 and 02(N2 ) = 

N 2 so that g1(x 1 ) = x 1 and g2 (x2 ) = ßx2. From Eqs. (6.12) and (6.13), the 
equilibrium points are given by 

1 - x 1 - x2 - u1 = 0 

1 - yx2/ X1 - u2 = 0 

(6.20) 

(6.21) 

Since u1 ~ 0 Ieads to 1 - x 1 - x2 ~ 0 and similarly u2 ~ 0 gives rise to 
1 - ax2 / x 1 ~ 0 from above, it follows that the set of nonnegative equilibrium 
points is again defined by (6.16). The corresponding control set is 
given by 

U = {(u 1 , u2 ) E R 2 IO ~ u1 ~ 1, 0 ~ u2 ~ 1} 

From Eqs. (6.8) and (6.9), we obtain 

b = -(x! + ßyx2/x1) 

c = ßyx2(l - x2/ x 1) 

( 6.22) 

( 6.23) 

(6.24) 

Since b < 0 and c > 0 for all (x1 , x2 ) E X, it follows that all equilibrium 
points are asymptotically stable. 
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6.3. Equilibrium Point Optimality 

The fundamental problern for the manager as defined here is to deter
mine Iimits for harvesting intensity. In particular, he must choose parameters 
u1 and u2 E U such that some optimality concept is satisfied with respect 
to the equilibrium yields Eqs. ( 6.3) and ( 6.4), where xt. x2 , u1, and u2 are 
related by the equilibrium point conditions 

gt(Xt. x2)- utgt(x1) = 0 

g2(X1, x2) - u2g2(x2) = 0 

(6.25) 

(6.26) 

as determined from Eqs. (6.1) and (6.2). The concepts of Nash equilibria 
(Ref. 17), Pareto minima (Ref. 18), and compromise solutions2 (e.g., 
Salukvadze, Ref. 19) are of particular interest and will be considered here. 
Necessary conditions required to obtain these solutions for parametric 
systems are given in detail by Vincent and Grantharn (Ref. 12). 

Necessary conditions to be satisfied at a Nash solution point that is 
also an interior point of U may be obtained analytically by first forming 

two Lagrangian functions 

Lt = -utgt- At(l)(gt- utgt)- A2(1)(g2- U2g2) 

L2 = -u2g2- A2(2)(gt - Utg2) - A2(2)(g2- U2g2) 

and then setting the partial derivatives of L1 with respect to x1, x2, and u1 
equal to zero, and the partial derivatives of L 2 with respect to x 1 , x2 , and 
u2 equal to zero. Assuming that g1(x1), g2(x2), [ilg1(x1 , x2)/ilx1], and 
[ilg2(xt. x2)/ ilx1] areallnot zero at the Nash solution point, the multipliers 
Ai(j), i = 1, 2, may be eliminated and the following two necessary conditions 
are obtained: 

(6.27) 

(6.28) 

1t is noted that if g1(x1) = g2(x2) = 1 (rate harvest), then Eqs. (6.27) 

and (6.28) are equivalent and are identical to c = 0 as obtained from Eq. 
(6.9). Thus, candidates for interior Nash solutionsunderrate harvest lie on 
the line c = 0 separating stability regions, as indicated in Fig. 6.1, and none 
are asymptotically stable. 

Necessary conditions for interior Pareto optimal solution points may 
be obtained by forming the Lagrangian function 

(6.29) 

2 See Chapter 1, for definitions of these terms. 
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and setting the partial derivatives of L with respect to X~o x2 , U~o and u2 

equal to zero when 71 1 and 71 2 arenonnegative but not both zero. For g1(xd 
and g2(x2) not zero, we obtain A1 = 71 1 and A2 = 712 from aL/ au1 = aL/ au2 = 
0. From the conditions aLjax1 = aLjax2 = 0, we obtain 

71t(agtfaxl) + 712(ag2!ax1) = o 
71t(agtfax2) + 71Aag2/ax2) = o 

(6.30) 

(6.31) 

which is equivalent to the geometric requirement previously stated. A 
nontrivial solution for 71 1 and 712 requires 

(6.32) 

It is noted that if g1(x1) = g2(x2) = 1 (rate harvesting), then Eq. (6.32) 
is identical to Eqs. (6.27) and (6.28) and to c = 0 as obtained from Eq. 
( 6.9). It follows that, for this case, necessary conditions for internal Pareto 
optimal and Nash solutions are identical and will yield points that lie on 
the line c = 0 separating stability regions, as indicated in Fig. 6.1. 

In general, the Pareto optimal solutions are not Nash and lie off the 
rational reaction sets for each of the harvesters. Because of this, either 
cooperation between the harvesters or some police action would be required 
in order to utilize such a solution. Under cooperation, it would be "irra
tional" not to choose some Pareto optimal solution since both harvesters 
could generally increase their yields by choosing a Pareto optimal solution 
point over some other one. 

Suppose that the resource manager can indeed police the Iimits he 
imposes. 1t would then be in the harvester's interests that he choose a Pareto 
optimal solution that would produce a yield for both of the harvesters 
greater than or equal to the yield they would obtain under a Nash solution. 
In general, there are many such Pareto optimal solutions, and some com
promise must be worked out. 

One possible compromise suggested by Salukvadze (Ref. 19) is to 
minimize the "distance" between a "utopia" point in yield space to the 
Pareto optimal solution set in this same space. The utopia point is the point 
corresponding to maximum yield for each harvester. All of the solution 
concepts have a simple geometric interpretation for two-dimensional prob
lems (i.e., two control variables) of the type considered here. This will be 
illustrated using the specific model given by Eqs. ( 6.10) and ( 6.11). 

Nash solution points may also be obtained geometrically by locating 
the intersection of the rational reaction sets (Simaan and Cruz, Ref. 20) for 
each of the harvesters. A point on the rational reaction set for one harvester 
is obtained by maximizing his steady-state yield subject to a given control 
choice by the other harvester. The steady-state yields defined by Eqs. ( 6.3) 
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and (6.4) for this model are given by 

h1 = X 1(1- X 1 - X2) 

h2 = ßx2(1 - yx2/ xt) 

169 

(6.33) 

(6.34) 

Figures 6.2 and 6.3 illustrate how the Nash solution may be obtained under 
constant-effort harvesting. The isoclines under constant predator harvesting 
( 6.21) are given by the straight lines, and lines of constant prey yield und er 
constant prey harvesting ( 6.33) are given by the curved lines as indicated. 
Maximum prey yield for any given predator isocline (the slope of which is 
determined by the intensity of predator harvesting) is maximized when the 
line of constant prey yield is tangent to the predator isocline. This is a point 
on the rational reaction set for the prey harvester. By considering a11 such 
points, the entire rational reaction set is obtained as i11ustrated in Fig. 6.2. 
Similarly, the rational reaction set for the predator harvesters is obtained 
as i11ustrated in Fig. 6.3. In this case, the straight lines are the prey isoclines 
(6.20) and the curved lines are the lines of constant predator yield (6.34). 

The intersection of the two rational reaction sets yields the Nash 
solutions. For the constant-effort situation i11ustrated in Figs. 6.2 and 6.3, 
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Fig. 6.2. Predator isoclines and Jines of constant-prey yield. 
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Fig. 6.3. Prey isoclines and lines of constant-predator yield. 

a single unique Nash solution is obtained. This solution has the Nash 
equilibrium property that a unilateral change in control by either harvester 
will result in a lower yield for that harvester ( which follows since that 
harvester would be moving off his own rational reaction set). Since the 
equilibrium property of the Nash solution makes it secure against cheating, 
it is an important solution concept for consideration by the manager as a 
possible Iimit for the maximum Ievel of harvesting. 

Pareto optimal solution points that are also interior points of U may 
be obtained geometrically by locating those points in X where lines of 
constant prey yield and lines of constant predator yield are tangent. In 
addition, the gradient of the yield functions must be in opposite directions. 
All such points will satisfy the Pareto optimal or undominated property: 
no other points exist suchthat one yield is greater than or equal to the yield 
at the Pareto optimal point and the other yield is strictly greater than the 
yield at the Pareto optimal point. The example defined by Eqs. (6.12) and 
( 6.13) has yields given by Eqs. ( 6.33) and ( 6.34 ). In this case, the lines of 
constant prey and lines of constant predator yield are as shown in Figs. 6.2 
and 6.3, respectively. The points of tangency corresponding to a Pareto 
optimal solution point are as shown in Fig. 6.4. There are other points of 
tangency between the curves shown; however, the gradients of the yield 
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functions are not in opposite directions and hence they do not correspond 
to Pareto optimal solutions. 

From Eq. (6.27), the rational reaction set for prey harvesters under 
effort harvesting is given by 

( 6.35) 

with the corresponding control u1 = 1/2. The rational reaction set for the 
predator harvesters as obtained from Eq. (6.28) is given by 

x2/x1 = -1 + (1 + 1/y)112 (6.36) 

with the corresponding control u2 = y[(l + 1/ y)- (1 + 1/ y)r12• These two 
sets intersect at the Nash solution point 

(6.37) 

The Pareto optimal solutions as obtained from Eqs. (6.30) and (6.31) 
are given by 

(6.38) 

with the restriction that x E X, 2x1 + x2 - 1 ~ 0, and 2 yx2 - x 1 ~ 0. These 
solutions are illustrated in Fig. 6.4 for the case where y = 1. 
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Figure 6.5 illustrates the procedure for finding a compromise solution. 
For every permissible equilibrium solution (i.e., all points in X; the triangle 
of Fig. 6.1), there corresponds a yield for each of the harvesters. The set X 
of Fig. 6.1 maps into the set shown in Fig. 6.5 for the model given by Eqs. 
(6.12) and (6.13). The Pareto optimal solutions map into the boundary 
points as indicated. Since the utopia point lies oft the boundary, it is not 
realizable. The compromise solution indicated is the one which minimizes 
the distance from the utopia point to the Pareto optimal set. For some 
situations, this compromise solution would result in a yield less than the 
Nash yield for one of the harvesters. In this case, that portion of the Pareto 
optimal set that produces yields greater than or equal to the Nash yields 
for both harvesters may be determined. Such a set is called a bargairring 
set in Fig. 6.5. A constrained utopia point may then be defined where 
coordinates are the maximum yield for each of the harvesters over the 
bargairring set. A compromise solution for this case minimizes the distance 
from the constrained utopia point to the bargairring set. 

The components of a utopia point in yield space may be determined 
analytically by solving two maximization problems. The prey yield and the 
predator yield are each maximized independently. A distance function 
between a utopia point and the Pareto-optimal set is defined, and the 
distance is minimized using standard nonlinear programming techniques. 
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In the constant-effort case, a compromise solution based on the utopia 
point will produce yields less than the Nash yields for both harvesters. 
Thus, a constrained utopia point is used instead. For y = 1 and ß = 1.5, 
the components of the constrained utopia point obtained by maximizing 
each harvester's yield over the bargairring set are found to be 

Y1 = 0.196, Y2 = 0.155 (6.39) 

A compromise solution of y 1 = 0.184 and y2 = 0.146 is obtained by minimiz
ing the distance between the constrained utopia point and the bargairring 
set. The result is illustrated in Fig. 6.5. 

For constant-rate harvesting, 01 = 02 = 1 so that conditions ( 6.27), 
(6.28), and (6.32) and c = 0 are identical. That is, each harvester's rational 
reaction set is the same and identical to the Nash solution. The Nash 
solution is the same as the Pareta optimal solution. These solution points, 
in turn, are on one of the dividing lines between asymptotically stable 
equilibrium points and those that are not asymptotically stable. All of these 
conditions reduce to (6.38), which was the Pareta optimal solution (Fig. 
6.4) for effort harvesting. Since the vulnerability of any equilibrium point 
solution under noneanstarrt harvesting needs to be investigated anyway, it 
is still of interest to examine the compromise solution for this case. 

The utopia point is obtained by noting that the prey yield h1 = u1x 1 

has a least upper bound of 1/4 at x1 = 1/2 and x2 = 0 with corresponding 
controls u1 = 1/2 and u2 = 1. The predator yield h2 = u2 ßx2 has a maximum 
value 

and 

x2 = 1- [y/(1 + y)]I/2 

with corresponding controls 

U1 = 0 and u2 = y[l + 1/y- (1 + 1/')') 1/ 2] 

For the case of y = 1, the utopia point is given by 

YI = 1/4, (6.40) 

Using ß = 1.5, a compromise solution of y 1 = 0.162 and y 2 = 0.170 is 
obtained by minimizing the distance between the utopia point and the 
Pareto optimal set. This result is illustrated in Fig. 6.5. Note that the 
compromise solution satisfies the stability requirement b < 0. 
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6.4. Vulnerability 

The vulnerability analysis will be illustrated using the model defined 
by Eqs. ( 6.12) and ( 6.13). The analysis will consider both effort and rate 
harvests with Iimits on the harvesting magnitude set by a Nash solution. 

Effort Harvest. For y = 1, the Nash solution is given by 

u, = 0.5, 

with the equilibrium point located at 

x, = 0.3536, 

with the corresponding yields 

y, = 0.1768, 

u2 = 0.586 

X 2 = 0.1464 

Y2 = 0.0858 

(6.41) 

( 6.42) 

( 6.43) 

Isoclines corresponding to the Nash control ( u1 = 0.5, u2 = 0.586) are 
drawn in Fig. 6.6. These isoclines, along with the original zero harvest 
( u 1 = u2 = O) isoclines, divide the positive orthaut into the eight regions 
shown. The intersection of the isoclines denotes possible equilibrium 
solutions for various combinations of null control and Nash control. 

I. 2 Xz. 

1.0 

® 
\_ PRt:DATOR. ISOC.LINES 

u2 =0 

.e 

.6 

.4 

® .z 

0 
1-, 

0 .2. .4- ,b .e 1.0 t.Z. 

Fig. 6.6. Effort-harvest isoclines for null control and Nash control. N = Nash equilibrium 
point. 
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The Nash solution is locally stable. Assurne that the Nash solution 
represents the tentative Iimits on u1 and u2 chosen by the system manager. 
That is, the prey are not endangered by a population Ievel = 0.3536 and 
the predators are not endangered by a population Ievel = 0.1464. The 
vulnerability of the system subject to the Nash Iimits on u 1 and u2 , i.e., 

0 ~ u 1 ~ 0.5 

0 ~ u2 ~ 0.586 

will now be examined. 

( 6.44) 

( 6.45) 

Since all four equilibrium points defined by the isoclines of Fig. 6.1 
are stable, it seems reasonable that any of these equilibrium points could 
be reached by starting the system somewhere inside the trapezoid E defined 
by the isoclines. This is indeed the case. In fact, it is possible under 
appropriate manipulation of the control still satisfying Eqs. ( 6.44) and ( 6.45) 
to drive the system outside the trapezoid. By employing conditions that 
must be satisfied on the boundary of all points reachable from the trapezoid, 
a "worst-case" harvesting program may be obtained. That is, under a 
"worst-case" program, the system will be driven as far as possible from the 
trapezoid. 

Suppose that the system were started on the boundary of the set of all 
points reachable from the trapezoidal region E and a control existed that 
would maintain the system on the boundary. Then, this control must satisfy 
a maximum principle (Grantham and Vincent, Ref. 16). 

In particular, there must exist multipliers A 1 and A2 satisfying 

(6.46) 

such that the control vector ( u1 , u2 ) maximizes 

H = A1x1(1- x1- x2 - u1 ) + A2ßx2(1- yx2/x1 - u2) (6.47) 

on the control set defined by Eqs. (6.44) and (6.45) for every point on the 
boundary ofthe reachable set. Furthermore, the maximum value of His zero. 

By defining P 1 = A1x 1 and P2 = ßA 2x2, the adjoint equations (6.46) 
reduce to 

PI = Plxl - yP2x2/ xl 

P2 = ßCP1x2 + yP2x2/x1) 

so that H is maximized by the controls 

U1 = {0 
0.5 

if P1 > 0 

if P1 < 0, 
{

0 
u -

2 - 0.586 

( 6.48) 

(6.49) 

(6.50) 

with no possibility for singular control (i.e., P1 = 0 or P2 = 0). The structure 
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of the control used on the boundary of the reachable set may be easily 
deduced by noting that when a prey isocline is crossed, P2 must equal zero 
(since H = 0) and when a predator isocline is crossed, P 1 must equal zero. 
Thus, u1 switches when crossing a predator isocline, and u2 switches when 
crossing a prey isocline. By figuring out the control in any one region, the 
control for all other regions can be deduced from the above observation. 

In the following discussion, it is assumed that the regions defined in 
Fig. 6.6 do not contain their boundary points. Suppose that the system is 
initially in E. Any other point in E can be reached by employing appropriate 
controls. To move outside this region, a boundary must be crossed. Consider 
any point on the boundary of the region between E and 1. We note that 

0 {+ 
XI= -

0 {+ x2 = -

if u1 = 0 ( definition of boundary x 1 + x 1 = 1) 

if u1 = 0.5 

if u2 = 0 

if u2 = 0.586 

( 6.51) 

( 6.52) 

Thus, to cross the boundary between E and 1, the control u2 must be zero. 
The slope of the crossing trajectory is given by 

x2/xl = _p_(x2)(1- yx2/xl) 
U 1 X 1 

(6.53) 

For y = 1 and 0.05 ::o; ß ::o; 0.5 ( range of variables tobe used), it is clear that 
this boundary cannot be crossed with u1 = 0.5. Since switching only takes 
place on isoclines, it is concluded that control for the boundary of the 
reachable set is u1 = u 2 = 0 in region 1 and that the direction of motion is 
counterclockwise. 

Consider now a trajectory following the boundary of the reachable set 
starting in region 1 with u 1 = u2 = 0. Since u2 = 0, the isocline separating 
regions 1 and 2 exists and the control u 1 switches to u1 = 0.5 in region 2. 
Now, since u 1 = 0.5 in region 2, there is no isocline separating regions 2 
and 3 so the control in region 3 is also given by u1 = 0.5 and u2 = 0. Since 
u1 = 0.5 in region 3, the isocline separating regions 3 and 4 exists and the 
control u2 switches to u2 = 0.586 in region 4. This process may be continued 
in order to map out Table 6.1 of control laws region by region. 

The boundary of the set of points reachable from the trapezoidal region 
E will be stable in the sense that if boundary control is used in the 
neighborhood ofthe boundary, then the systemwill asymptotically approach 
the boundary. By assuming that this local property is global, it is easy to 
formulate a control law throughout the state space. Namely, use region 1 
control throughout region 1, and so on. lt remains only to formulate a 
control law for region E. Any control law that will move the system out of 
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Table 6.1. Effort-Harvest Controls for the 
Boundary of the Reachable Set 

Region Control u1 Control u2 

1 0 0 
2 0.5 0 
3 0.5 0 
4 0.5 0.586 
5 0.5 0.586 
6 0 0.586 
7 0 0.586 
8 0 0 

E will do. For example, u1 = u2 = 0 will move the system out of E into 1. 
None of the other boundaries between E and the other regions can be 
crossed using this control. 

Controls may now be assigned for the boundaries between E and 3, 
E and 5, and E and 7 which will guarantee the system to leave E. The 
following control algorithm for effort harvesting was obtained by this 
process: 

U1 = {~· 5 

u2 = {~·586 

F1Z = 1 - x1 - x2 

F1M = F1Z- 0.5 

F2Z = 1 - yx2/ x1 

F2M = F2Z - 0.586 

if F2M ~ 0 and F1M > 0 or F2Z ~ 0 and F1M ~ 0 

if above not true 

if F1M ~ 0 and F2M < 0 or F1Z ~ 0 and F2M ~ 0 

if above not true 

This control law is considered to be a "worst-case" control law (only 
necessary conditions were used) as it should drive the system to the boundary 
of the set of points reachable from the region E. 

The result of employing the worst-case effort-harvesting program is 
illustrated in Figs. 6.7, 6.8, and 6.9 for Nash Iimits (6.44) and (6.45) on the 
control with y = 1 and ß = 0.05, 0.1, and 0.5, respectively. For this case, 
whether one starts inside or outside the boundary shown, the worst-case 
control will ultimately move the system to the boundary. The fact that one 
can start anywhere in the positive orthant outside the boundary and under 
worst-case harvesting still reach the boundary illustrates considerable 
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Fig. 6.7. Effort-harvest vulnerability under Nash Iimits, y = I and ß = 0.05. 

inherent stability of Eqs. (6.12) and (6.13) under effort harvesting. None of 
the species can be driven to extinction using Nash Iimits on the controls. 

It was assumed that none of the species were considered to be 
endangered at the Nash equilibrium point. Note that in each case the prey 
could be driven to population Ievels lower than the Nash Ievel, possibly to 
an endangered Ievel. In other words, if the Nash equilibrium solution were 
just marginally above an endangered criteria, then this solution for harvest
ing Iimits should be discarded by the manager of this renewable resource 
ecosystem for one in which the system cannot dynamically violate the 
endangered species requirement. It is of interest to note that the boundary 
of the reachable set is relatively insensitive to ß. This result could have 
considerable bearing on accuracy requirements for the data. 

Note also that the equilibrium points may or may not form a part of 
the reachable set boundary. For example, the Nash equilibrium point is on 
the boundary for ß = 0.05 and ß = 0.1 but is interior to the set for ß = 0.5. 
This result is related to whether the corresponding eigenvalues are real or 
not. Eigenvalues for the four equilibrium points may be obtained from 
Eq. (6.18), as summarized in Table 6.2. 
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Fig. 6.8. Effort-harvest vulnerability under Nash Iimits, y =I and ß = 0.10. 

Note that the eigenvalues at the Nash equilibrium point are real for 
ß = 0.05 and ß = 0.1 and complex for ß = 0.5. Examining the eigenvalues 
at the other equilibrium points and noting their location relative to the 
boundary in Figs. 6.7, 6.8, and 6.9, it is found that an equilibrium point 
will be inside the boundary of the reachable set if the eigenvalue is complex 
and may or may not be on the boundary of the reachable set if the 
eigenvalue is real. (In all cases, the eigenvalues have negative real parts.) 

Rate Harvest. At equilibrium, Eqs. (6.12) and (6.13) reduce to 

(6.54) 

( 6.55) 

The intersection of these two isoclines represents equilibrium solutions. All 
possible positive equilibrium solutions are obtained by choosing 0 ~ u1 ~ 

1/4 and O~u2/ß~4y+2-4y[(y+1)/y] 112 • With y=1, all possible 
equilibrium solutions are contained in the triangle of Fig. 6.10 composed 
of regions E, 5, 6, and 7. 
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Fig. 6.9. Effort-harvest vulnerability under Nash Iimits, y = I and ß = 0.5. 

Again, a tentative harvesting Iimit may be obtained by seeking a Nash 
solution for the yields (6.33) and (6.34). Nash solutions for the controls u1 

and u2 are subject to the constraint that an equilibrium point as given by 
Eqs. ( 6.54) and ( 6.55) must exist. In this case, the Nash solution is not 
unique. For y = 1, the set of N ash points illustrated in Fig. 6.11 is obtained_ 
None of the N ash solutions illustrated in Fig. 6.11 are suitable as a tentative 
harvesting Iimit since, as we have previously shown, none of the Nash 

Table 6.2. Equilibrium Point Eigenvalues under Effort Harvesting 

Equilibrium 
Contra! point Eigenvalues 

ut u2 XI x2 ß = 0.05 ß = 0.01 ß = 0.05 

0 0 0.500 0.500 Real Camplex Camplex 
0 0.586 0.707 0.293 Real Real Real 
0.5 0 0.250 0.250 Camplex Camplex Camplex 
0.5 0.586 0.354 0.146 Real Real Camplex 
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Fig.6.10. Rate·harvestisoclinesfornullcontrolandconstantcontrol, u1 = 0.1 and u2 /ß = 0.1. 

solutions are stable. The Nash solutions will be on the border between 
stable and unstable equilibrium points. 

Since none of the Nash solutions are stable, some other equilibrium 
point must be chosen for setting a tentative harvesting Iimit. Consider, for 
example, tentative harvesting Iimits of u 1 = 0.1 and u2 / ß = 0.1. With y = 1, 
the isoclines as defined by Eqs. ( 6.54) and ( 6.55) und er these Iimits intersect 
with the null harvesting isoclines, as shown in Fig. 6.10. The points of 
intersection are equilibrium points for the system (6.12) and (6.13) under 
various combinations of constant control. There are two equilibrium points 
defined by the control: 

(6.56) 

It follows from Fig. 6.11 that the lower right-hand equilibrium point is 
unstable. The other equilibrium point located at 

X1 = 0.465, x 2 = 0.320 ( 6.57) 

is stable with the corresponding yields of 

Yl = 0.1, Y2 = 0.1ß (6.58) 
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Fig. 6.11. Stahle equilibrium points for rate harvest. 

Assurne then that this stable solution represents the one chosen by the 
system manager and that neither the prey nor predators are endangered by 
the population Ievels given by Eq. ( 6.57). The vulnerability of the system 
subject to this choice, i.e., 

may now be examined. 

(6.59) 

(6.60) 

All four equilibrium points defining the corners of region E in Fig. 
6.10 are stable. As in the previous case, if the system starts somewhere 
inside of E, it is possible under appropriate manipulation of the control 
satisfying Eqs. (6.59) and (6.60) to drive the system outside of E. The 
boundary of all points reachable from E is again obtained using the 
maximum principle. In this case, 
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Table 6.3. Rate-Harvest Controls for the 
Boundary of the Reachable Set 

Region Control udk Control au2 / r1 

1 0 0 
2 0.1 0 
3 0.1 0 
4 0.1 0.1 
5 0.1 0.1 

6 0 0.1 
7 0 0.1 
8 0 0 

183 

Applying the maximum principle, it is again found that u1 switches 
when crossing a predator isoCline and u2 switches when crossing a prey 
isocline. By using the same arguments as in the previous case, the control 
to be used on the boundary of the reachable set when located in the various 
regions is obtained as summarized in Table 6.3. 

By applying region 1 control throughout region 1, and so on, and 
formulating a controllaw for E as before, the following "worst-case" control 
algorithm for rate harvesting is obtained: 

u2 = { 0.1 

0 

F1Z = 1 - x1 - x2 

F1M = F1Z- 0.1/x1 

F2Z = 1 - yx2/ x1 

F2M = F2Z- 0.1/x2 

if F2M ~ 0 and F1M > 0 or F2Z ~ 0 and F1M ~ 0 

if above not true 

if FlM ~ 0 and F2M < 0 or FlZ ~ 0 and F2M ~ 0 

if above not true 

Figure 6.12 illustrates the results of employing worst-case rate harvest
ing with controllimits u1 = u2 / ß = 0.1, 'Y = 1, and ß = 0.1. The inner region, 
A, contains the four stable equilibrium points. Region A has the property 
that, under worst-case rate harvesting, if the system starts in A, then it will 
ultimately be driven to tne boundary of A. The next region, B, has the 
property that, under worst-case harvesting, if the system starts in B, then 
it will ultimately be driven to the boundary of A. Region C has the property 
that, under worst-case harvesting, if the system starts in C, then one or 
the other of the species will be driven to extinction. Thus, unlike the 
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Fig. 6.12. Rate-harvest vulnerability under Iimits 0.,; u1 .,; 0.1 and 0.,; u2 / ß.,; 0.1. 

effort-harvesting case, under rate harvesting the boundary of region A is 
stable only in a limited neighborhood of the boundary. 

Note that the boundary between regions A and B represents the 
boundary ofthe set ofpoints reachable from within A, whereas the boundary 
between B and C represents the boundary of the set of points controllable 
to the set A. In each case, system trajectories that lie on these boundaries 
must satisfy a maximum principle. The worst-case rate-harvesting algorithm 
results from the necessary conditions for either case. Hence, the same 
algorithm was used to generate both boundaries. 

lt follows from Fig. 6.12 that both the prey and predators can be driven 
to values less than those corresponding to the constant control ( u1 = u2 / ß = 
0.1) equilibrium point, possibly endangering one or both of the species. It 
is of interest to note that it is possible to drive one of the species to extinction 
under worst-case rate harvesting, even when the system starts from a 
seemingly favorable abundance of predators (from the harvesters' point of 
view ), such as point S in regions C. 
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6.5. Conclusions 

For the model given by Eqs. (6.1) and (6.2) with steady-state yields 
given by Eqs. (6.3) and (6.4), it has been shown that, under constant-rate 
harvesting, interior Pareto optimal and Nash solutions are identical and 
will be on a line separating the region of stable equilibrium points. A 
compromise solution for maximum harvesting Iimits can often be found 
which should satisfy both harvesters. This is based on the premise that both 
harvesters would agree to a solution that would produce yields greater than 
or equal to their Nash yields. This premise is based on the fact that the 
Nash point appears to each harvester as a maximum sustainable yield point 
with respect to unilateral changes in his own control. 

The examples show that particular results are model dependent. Under 
effort harvesting, the Nash solutionlies off of the Pareto optimal set and a 
bargaining set exists that allows for a stable compromise solution. Under 
rate harvesting the Nash, Pareto optimal, and bargaining sets are all iden
tical. Unfortunately, no solution lying on these sets will be asymptotically 
stable. 

An estimate of system vulnerability based on a constant-harvesting 
analysis may greatly underestimate the time vulnerability of the system. A 
non-constant-harvesting program coupled with the dynamical nature ofthe 
system can be used to amplify the vulnerability effect. The vulnerability of 
a given solution is also shown to differ significantly under effort and rate 
harvesting. 
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Competition, Kin Selection, and Evolutionary 
Stahle Strategies 

M. MIRMIRANI 1 AND G. ÜSTER 2 

7.1. Introduction 

In his investigations on animal fighting behavior, John Maynard Smith 
(Ref. 1) coined the term "evolutionarily stable strategy" (ESS) to denote a 
behavioral strategy that is stable against invasion by a small number of 
individuals who employ a "mutant," or deviant strategy. The notion of an 
ESS is quite similar-but not identical to-the concept ofa Nash equilibrium 
in game theory. Several authors had previously attempted to apply game 
theoretic formalisms to evolutionary problems (e.g., Lewontin, Ref. 2; 
Slobodkin and Rappoport, Ref. 3; Rocklin and Oster, Ref. 4). With the 
exception of Maynard Smith's analyses, however, few empirically verifiable 
predictions wcre generated. Moreover, with the exception of Stewart 
(Ref. 5), the models were mostly restricted to static games. In this study we 
shall present a number of modelsthat treat ESSs from a dynamic viewpoint. 
In particular, weshall attempt to generalize conventional competition theory 
by permitting the competing parties to adjust their strategies. Rather than 
seeking dynamically stable equilibria, as in Volterra- Lotka theory, we shall 
Iook for strategically stable solutions, or ESSs ( cf. Maynard Smith, Ref. 6). 
Ultimately, one must extend competitive models to the Ievel of the genetic 
loci inftuencing the strategies. Unfortunately, the efforts in this direction 
usually Iead to models that are mathematically intractible ( cf. Rocklin and 
Oster, Ref. 4 ); therefore, there is some justification for taking a phenomeno
logical approach such as game theory. 

In the model analyzed here we shall restriet ourselves to strategies that 
control the timing and allocation of resources. The structure of the model 

1 School of Engineering, California State University-Los Angeles, Los Angeles, California 
90032. 

2 Department of Entomology, University of California, Berkeley, California 94720. 
Reprinted from Theoretical Population Biology 13(3), 304-339 (1978). Copyright© 1978, 
Academic Press, Inc. Reprinted with permission. 
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will allow us to generalize to the case where the competitors are related to 
one another. Thus we will be able to see how kin selection modifies 
competitive strategies. Finally, we shall extend the competition model so 
as to include the effects of group selection so that the interaction between 
individual, kin, and group selection can be studied. 

7.2. Optimal Reproductive Strategy over a Single Season 

7.2.1. The Model. Consider a plant whose life cycle is played out over 
a single season of length T. The model could, of course, apply to any 
seasonally breeding organism whose demographic characteristics fit the 
model's assumptions. Denote by P( t) the plant biomass, which commences 
the season at a value P(O) = P0 (i.e., the seed weight). During the course 
of the season we shall assume that the plant can adopt but two strategies: 
(1) it can reinvest its resources ( e.g., "photo-synthate") into creating more 
plant biomass, and/ or (2) it can direct its metabolic resources into creating 
seeds, whose biomass we denote by S( t). The structure of the model is 
shown in Fig. 7 .1. 

Given a constant supply of resources, R ( e.g., soil, moisture, nutrients, 
sunlight), we denote by u(t) E [0, 1] the fraction ofthe resources reinvested 
into creating new biomass. We shall assume that the rate at which resources 
can be converted into plant material is proportional to both the existing 
biomass, P(t), and to the fraction of resources reinvested, u(t) R, i.e., 

[Rate of manufacture of new plant biomass] = const x u(t)RP(t) (7.1) 

If we assume that the loss rate of biomass is constant over the season, then 

ru 

f!P(t) 
R(t) 

Fig. 7.1. The structure ofthe basic allo-
cation model. The plant can 
reinvest a fraction u(t) E 

[0, I] of the available resour
ces, R, thus producing new 
vegetative growth, P( t ), at a 

rate fRuP; and/ or it can invest an amount (I - 11) R into seed production at a rate i'R(l - 11) P. 

The optimal reproductive strategy consists of choosing an allocation schedule, 11*(1), such 
that the maximum amount of seeds have been produced by the end of the season. 
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we can write for the growth rate of the plant's vegetative body 

dP(t) A 

-- = ru(t)P(t)- ~-tP(t) 
dt 

P(O) = P0 , t E [0, T] 

189 

(7.2) 

where r is the resource conversion efficiency, 11- is loss of plant material 
( e.g., by grazing), and T is the season length. This is the simplest possible 
model for plant growth. The assumption of bilinearity in P and u will turn 
out to be a central feature in determining the optimal strategy; the con
sequences of including nonlinearities in Eq. (7.2) will be discussed later. 

We shall also assume that the rate at which seed biomass can be 
manufactured is also proportional to the amount invested, and so we can 
write for the seed production rate 

dS(t) _ 
---;}( = r[1- u(t)]P(t)- vS(t) 

S(O) = 0, t E [0, T] 
(7.3) 

where r is the conversion efficiency of resources to seed and v is seed loss 
( e.g., seed predation). 

Thus the optimization problern is the following: What should the 
temporal pattern of resource allocation be so that the amount of seed 
produced by the end of the season is maximized? That is, 

Max S(T) 
o:;:;u(. ):::::;1 

subject to the constraints 

P = ruP -11-P, 

S = r(l- u)P- vS, 

P(t), S(t) ~ 0, 

P(O) =Po 

S(O) = 0 

u(t) E [0, 1] 

(7 .4a) 

(7 .4b) 

(7.4c) 

(7 .4d) 

7.2.2. The Optimal Strategy. This problern has been addressed by a 
number of authors in various settings (Cohen, Ref. 7; Denholm, Ref. 8; 
Macevicz and Oster, Ref. 9; Perelson et al., Ref. 10). The solution can be 
shown to be the following. The optimal schedule of resource allocation, 
u*( · ), is shown in Fig. 7.2. It consists of two segments: (i) for 0 ~ t < r*, 
u* = 1, and for r* ~ t ~ T, u* = 0. That is, from the beginning ofthe season 
until the time r* all ofthe plant's resources are reinvested into manufacturing 
new vegetative body. At the critical time r*, all resources are switched over 
to the manufacture of seed. This type of strategy is known in the control 
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a 
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s*<tl 
I 
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Fig. 7.2. (a) The optimal allocation strategy u*(t) is u* =I, 0 ~ t ~ -r*, u* = 0, -r* ~ t ~ T, 
where -r* is the optimal switching time from vegetative growth to seed production. 
(b) The optimal state trajectory x*(t) = (P*(t), S*(t)) generated by the optimal 
strategy, u*( t). 

theory Iiterature as "bang-bang" control, since the control u( ·) is either 
fully "on" ( u = 1) or fully "off" ( u = 0). No "graded" strategy of simul
taneous plant and seed production can achieve a high er seed yield at season's 
end.2 

The optimal switching time, r*, is given by (Macevicz and Oster, Ref. 9) 

r* =T-In [( 
1 ) 1/(IL-v)J 

1-(J.t-v)/r 
(7.5) 

and the optimal seed production can be expressed as a function of the 
initial condition, the system parameters, and the season length, T. 

Modifications of this model have been employed to study reproductive 
strategies of social insects (Macevicz and Oster, Ref. 9) and lymphocytes 
in the mammalian immune system (Perelson et al., Ref. 10). The all-or-none 
strategy turns out to be robust under a nurober of model generalizations 
including time-varying parameters (i.e., resource abundance), time delays, 
and certain density-dependent growth assumptions. lt can be shown, 
however, that nonlinear conversion efficiencies can Iead to graded control, 
as can stochastic variation in the parameters. In our subsequent development 

2 Necessary and sufficient conditions for optimality are discussed in Perelson et al. (Ref. 10). 
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we will consider only bang-bang strategies since they can be parametrized 
by a single quantity, the switching time, T*. Furthermore, we shall set 
J.L = II = 0 and r = ;_ This Will greatly simplify OUT analyses, but Will not 
alter the qualitative results of the models, since the switching strategy is a 
consequence of the model's linearity in u(t). 

Before proceeding to the competitive case we shall first generalize the 
model to the case of a perennial organism. 

7 .3. Optimal Reproductive Strategy over Many Seasons 

7.3.1. The Model. Next we consider a plant that lives for N seasons, 
N = 1, 2, . . . and assume that the dynamical equations goveming growth 
and seed production are the same as for the annual plant. That is, for 
season i: 

dP;(t)/ dt = ru,(t)P;(t) 

dS;(t)/ dt = r(l- u;(t))P;(t), i = 1, 2, ... , N 

(7.6) 

(7.7) 

It will prove convenient if we henceforth normalize our time scale so that 
each season is of unit length, t -+ t I T. 

Since we have neglected mortality Iosses the i!litial biomass at the 
beginning of each season, P;(O), is equal to the final biomass at the end of 
the preceding season. Thus, setting P1(0) = P0 , the boundary conditions 
for Eqs: (7.6, 7.7) are: 

P1(0) =Po 

P;(O) = P,_ 1(1), 

PN(l) unspecified 

i = 2, 3, ... , N 

i = 1, 2, ... , N 

(7.8a) 

(7.8b) 

(7.8c) 

(7.8d) 

Next we must formulate an appropriate fitness measure for the multi
season case. We proceed as follows. Let p; be the probability of the plant 
surviving from the ith to the i + 1st season. Then the expected lifetime seed 
production is 

N 

J = L p,S;(l) (7.9) 
i=l 

If the environment is constant we can set all of the overwinter survival 
probabilities equal and set 

N 

I= I p'- 1S,(l), p = const ~ 0 (7.10) 
i=l 
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Thus the possibility of not surviving to produce seed in later seasons puts 
a greater premium on present production. The survival probability can be 
viewed as a discounting factor for future reproductive success ( cf. Perelson, 
Mirmirani, and Oster, Ref. 10). Thus the multiseason optimization problern 
is to maximize (7.10) subject to the dynamical constraints (7.6), (7.7), and 
(7.8). 

7.3.2. The Optimal Strategy. Since the model is still linear in u and 
P the optimal strategy is still bang-bang, consisting of at most one switch 
in each season, i.e., 

u7(t) = 0, O~t~1 

or 

u7(t) = 1, O~t~1 

u7(t) = 1 0 ~ t < T7 
(7.11) 

or 

u7(t) = 0, Tr ~ y ~ 1 

The values of T7 can be obtained by solving a set of recursive equations 
discussed in the Appendix. Thus the multiseason strategy is qualitatively 
similar to the single season strategy, but with an additional dependence on 
the parameter p, the overwinter survival. The optimal multiseason strategy 
has the following qualitative characteristics: 

1. The optimal switching time to seed production, T7, is a monotoni
cally decreasing sequence, so that the time spent on seed production 
increases each season. This is sensible since the plant is larger each succeed
ing season and thus is capable of producing seed at a higher rate while the 
probability of survival decreases monotonically. 

2. There is a critical value, p, of the survival probability such that for 
p < ß there is a switch to seed production in every season. For values of 
p > p the plant allocates all of its energy to vegetative growth during the 
early seasons of its life and then commences to produce seed in later seasons3 

Figure 7.3 gives the number of seasons with a switch as a function of p for 
fixed r. 

3 Note that the bilinear model predicts that for p > e-' and N ~ oo the plant never switches 
to seed production, but continues to grow indefinitely. This is an artifact of neglecting any 
density dependence in the model, or any uncertainty that can produce deviations from the 
expected long-term seed production, including resource limitations. Modeling uncertainty, 
say, by the variance, precludes this possibility. 



www.manaraa.com

Competition, Kin Selection, Evolutionary Stable Strategies 193 

8 I I I I I I I I 

1 ,.... .. -
"' c:: ~ 

-.&:; 

f-
>- -c:: c-:n 

0 0.!1 

"' 
6 

4 

0 .&:; c:: ., o"' 0 - "' 
-.&:: "' -"j- c:: c ·- .. 

~ "' >-"' - ., / c:- -> o_2 .. 
5 

·= 
.&:; ., 

~.r: 

.r: 
"j- -

u "' 
f- ) -
f- -

I 
2 

.I .2 .3 .4 .5 .6 .1 .8 .9 1.0 

p 

Fig. 7.3. The number of seasons with a switch as a function of p for fixed r. 

7 .4. Optimal Reproductive Strategies under Competition 

7.4.1. Two Competing Species in a Single Season. Next we consider 
how a plant must alter its reproductive strategy in the presence of a neighbor 
that competes for resources. To model this we modify the assimilation 
constant r in the single species model to include inhibition by the competitor: 
r1 -+ r1 - E2 P2 , so tha! the growth equations are 

F1 = (r1- E 2P2)u1P1, 

Pz = (rz- EIPI)uzPz, 

PI(O) = PIO > 0, 

Pz{O) = P20 > 0, 

r 1 - E2 P2 ~ Ö 

r2 - E1P1 ~ 0 

(7.12) 

(7.13) 

Here E 1 , E2 measure the strength of the competitive interaction. The 
equations for seed production are then 

S1 = (r1- E 2P2)(1- u1 )P~o 

Sz = (rz- E1P1)(1 - Uz)Pz, 

SI(O) = 0, 

S2(0) = 0, 

r 1 - E2 P2 ~ 0 

r2 - E1P1 ~ 0 

As before, we shall use normalized time, t E [0, 1]. 

(7.14) 

(7.15) 

7.4.2. Nash Equilibrium Strategies. We can renormalize P 1 and P2 to 
eliminate E 1 and E2 , P1-+ EP1, P2 -+ EP2 • To commence our analysis we 
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shall consider the symmetrical case where r1 = r2 = r, E 1 = E2 = E and 
P10 = P20 = P0; this assumption will be dropped later. The dynamical 
equations are then 

F1 = (r- Pc_)u 1P1, P1(0) =Po, r- P2 ~ 0 (7.16) 

Pc_ = (r- P1)u2 P2 , P2(0) =Po, r- P1 ~ 0 (7.17) 

S1 = (r- P2)(1- ui)P1, 5 1(0) = 0 (7.18) 

S2 = (r- P1)(1- u2)P2 , 52(0) = 0 (7.19) 

Each "player" in the competitive game for resources should be selected 
to manipulate its allocation control u,( ·) E [0, 1] so as to maximize its 
reproductive output. Thus, the fitness criteria are 

l1(u1( · ), u2( · )) = 51(1) 

l2(u1( · ), U2( · )) = 52(1) 

(7.20) 

(7.21) 

where we have indicated that each player's fitness depends on both its own 
and its opponent's strategy. Clearly, it is generally not possible for each 
party to simultaneously maximize its fitness. Therefore, we shall Iook for 
strategies that will permit stable coexistence of the two competitors. A 
reasonable definition of competitive coexistence is the Nash equilibrium 
(NES), as we will discuss shortly. A strategy pair [uf( · ), uf( · )] is a (weak) 
Nash equilibrium if and only if the following inequalities hold for all 
admissible u1 ( ·) and u2 ( ·) 

l1(u1( · ), ui( · )) ~ JJ(uj( · ), ui( · )) 

J2(uf( · ), u2( · )) ~ l2(uf( · ), uf( · )) 

(7 .22a) 

(7.22b) 

In other words, a Nash strategy has the property that neither party can 
improve its fitness by unilaterally changing its strategy. If (7.22) holds as 
a strict inequality, the strategy u*( ·) = [uf( · ), uf( · )] is called a strong 
Nash equilibrium: A deviant strategy is penalized. If Nash solutions lie in 
the interior of the "unit square," i.e., 0 < u1 ( t ), uc_( t) < 1, 'f/0 ~ t ~ 1) then 
they can be located by solving 

D 1J(u 1(t), uf(t)) = 0 

D 2J(uf(t), u2(t)) = 0 

(7.23a) 

(7.23b) 

where D 1 ( ·) and D 2 ( ·) denote Frechet (functional) derivatives. This is a 
local condition only, and so implies stability against "small" cheating. Nash 
solutions that are stable against small deviations can be considered as 
"evolutionarily stable" since point mutations will, presumably, give rise to 
small strategy perturbations. Such "local" equilibria we shall call ESSs 
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(although clearly strong NESs are also "evolutionarily stable" in a more 
robust sense). Weshall discuss this further below after computing the Nash 
solutions. 

In the Appendix we show that the NES for the model (7.16)-(7.19) is 
a switching strategy 

uf(t) = u~(t) = 1, 0 ~ t < r*, 

= 0, r* ~ t ~ 1, 
(7.24) 

where the optimal switching time, r* can be obtained by solving a transcen
dental equation. Knowing the switching time, one can compute the state 
trajectories. Since the growth and seed production phases are sequential 
we can represent the optimal trajectories graphically as shown in Fig. 7.4a. 

If we drop the symmetry assumption so that either P10 """ P20 and/ or 
r1 """ r2 , the optimal strategies for each opponent are still bang-bang; 
however, the switching times for each plant are now different, as shown in 
Fig. 7.4b. 

It is interesting to compare the competitive switching strategies with 
the singleplant optimum switching time. As shown in Fig. 7.5 for the case 
of symmetric parameters, there is a "switching surface" ~c in P- t space 
that always lies to the left of the single plant switching time. For trajectories 
starting under ~"' u* = 1 (vegetative growth); when the trajectory passes 
through ~o u switches to u* = 0 (seed production). Trajectories starting 
above ~c remain at u* = 0 throughout the season. Notice that competition 
enforces earlier switching times and thus lower overall seed production. 
Thus, in Fig. 7.4b, plant 2, having a higher conversion rate r, can afford to 
wait Ionger to switch to seed production and so end up with a !arger seed 

Fig. 7.4. Optimal state trajectories for 
two competing plants. (a) 

't = '2· Pto = P2o; (b) 't > '2• 
P10 = P2o; (c) 't = '2• Pto > 
p20· 

e,~ s,~ 
a 
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.75 1.0 

Fig. 7.5. Switching surfaces for (i) an isolated plant, I; (ii) two competing plants Ic; (iii) 
two "cooperating plants," IP (cf. Section 7.5). 

biomass by season's end. Thus, suchagame played repetitively over many 
seasons will ultimately result in plant 1 going extinct. 

By restricting ourselves to switching strategies we can construct a 
graphical representation ofthe NES which illustrates its stability characteris
tics. The Nash strategies are the functions [uf(t), u~(t)], t E [0, 1]. 
However, by restricting one's attention to bang-bang strategies with at most 
one switch, the entire function is parametrized by the switching times [Ti, Tz]. 
Therefore, the fitnesses in Eq. (7.23) can be expressed as functions of the 
T's only: 

Ji = Ji (Ti, Tz) 

lz = 12( Ti, Tz) 

(7.25a) 

(7.25b) 

Thus, since each player's strategy is completely characterized by its switching 
time, we can regard the T's as the strategic parameters. That is, the vector 
T = ( T~o Tz) E IR 2 specifies a switching strategy. In Fig. 7.6 we have plotted 
constant fitness on the (Ti, Tz) plane. From Eqs. (7.23) we see that the NES 
is located where the gradients of the Ji and 12 contours are orthogonal to 
one another and parallel to their respective coordinate axes: 

VJi(T*) · VJ2(T*) = 0 

Vl,(T*). VTj = 8,, 
(7.26) 
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0 0.3 0.5 1.0 

Fig. 7.6. Cantours of constant fitness, 11 = const, 12 = const, areplottedas a function of the 

switching times, r 1 and r 2 for the model parameters shown. The NES as defined by 

Eqs. (7.16)-(7.26) is located where the fitness contours areorthogonal and parallel 

to the coordinate axes. The Pareto, or cooperative solution, is the locus of tangents 

between 11 and 12 contours, labeled ll in the figure. 

The geometry ofthe situation shown in Fig. 7.6 corresponds to our definition 
of competitive equilibrium given in Section 7.4.2: If one party holds its 
switching time at the NES, its opponent will lose fitness if it deviates from 
the NES. It is apparent from the geometrical properties of the NES shown 

in Fig. 7.6 that one can construct models that have more than one NES, or 
which have no NES at all. In the former case one cannot say which NES 
the system will evolve toward without explicitly modeling the underlying 
genetic dynamics. Ausland er et al. (Ref. 11) discuss a model wherein the 
genetic dynamics preclude a stable ESS. Figure 7.7 shows the location of 
the NES replotted in (11 , 12 ) coordinates. The fitness set shown there will 
be discussed when we treat cooperative solutions in Section 7.5. 

An important assumption underlying the use of the Nash equilibrium 
as an ESS in the context of our model is that the equilibrium strategy must 
correspond to homozygous genetic configurations. That is, if the genes 
controlling the switching strategies were not fixed, then heterozygotes in 
both competing populations would have strategies deviating from the "pure" 
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Fig. 7.7. The strategy space situation in Fig. 
7.6 is replotted as a "fitness set'" in 
11 , 12 Coordinates. The image ofthe 

.200 Pareto set corresponds to the north
east frontier of the fitness set. 

switching strategy (7.24). Some ofthese simultaneaus deviations would Iead 
to simultaneaus increase ofboth competitors, i.e., the direction ofthe Pareta 
set. Mixed strategy ESSs are discussed in Rocklin and Oster ( Ref. 4). 

7 .5. Kin Selection and Competition between Related Individuals 

The concept of inclusive fitness introduced by Hamilton (Ref. 12) 
provides a general basis for understanding selection in populations of 
genetically related individuals. In this section we will investigate how genetic 
relatedness affects the NES. 

In Oster et al. ( Ref. 13) a general expression for inclusive fitness was 
derived, 

R 

I,= I rj\fA (7.27) 
j~l 

where the summation is over all relatives of individual i and where r,1 is 
the expected fraction of j's genome which is identical by descent to alleles 
in i; ~ is the expected number of offspring of relative j (j = 1 refers to i's 
own offspring); and S1 is the expected reproductive success of relative j. 
The reproductive success of each individual turned out to be a function of 
the sex ratio in the entire population. For our purposes here we will avoid 
this complication by assuming our plants are monoecious. Therefore, the 
inclusive fitness of each plant is proportional to 

]I= Sl(l) + T/J2S2(1) 

fz = S2(1) + 1721S1(1) 

where we have set '" ,g, 1 and r,ß1 ,g, TJ,r 

(7.28a) 

(7.28b) 
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In the Appendix we show that the NES for the symmetric competition 
model with fitnesses given by Eqs. (7.28) and if 71ij = 71j• is bang-bang, with 

uf(t) = uf( r) = 1, 0 ~ t < r*( 71i;) 
(7.29) 

= 0, 

where the optimal switching time r*( 71i;) is now a function ofthe relatedness 
parameter, and can be computed by solving a transeendental equation. The 
point of interest to us here is the behavior of the optimal solution as a 
function of the degree of relatedness. 

First consider the symmetric case 77 12 = 77 21 = 71· In this case the optimal 
switching times for the two plants are identical, and decrease as 77 increases. 
In Fig. 7.8 we have plotted the combined yield Y( 7J) = S1 (1) + S2( 1) for 
several values of 7J. Y( 7J) has a maximum at 77 = 1 and decreases monotoni
cally as 77 ~ 0 and oo. Therefore, the total yield is greatest in a community 
of genetically identical individuals (although, as shown in Fig. 7.8, this 
maximum is not a strong function of r*). When 77 = 1, the NES corresponds 
to a Pareto, or cooperative equilibrium (cf. lntrilligator, Ref. 14). The 
cooperative solution is shown in Fig. 7 .6; it is the locus of points where the 
fitness contours are tangent, i.e., 

A<O (7 .30) 

The reason why this locus is called the cooperative solution can be seen by 

0 .25 .5 .75 1.0 

Fig. 7 .8. Combined yield Y( 1J) = S1 (1) + S2 (1) for several 
values of TJ. 
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contrasting it to the NES in Fig. 7 .6. If both competitors decide to cooperate 
(i.e., 11 > 0), then both can increase their fitnesses by moving their switching 
times earlier, into the shaded cone, c. Once the Pareto locus has been 
reached, however, no further bilateral fitness increase is possible. The Pareto 
locus is shown in Fig. 7.7 as the frontier of the fitness set (Levins, Ref. 15). 
In Fig. 7.5 the Pareto switching surface is also drawn for comparison. 
Cooperative switching times are always earlier than competitive ones, but 
net yield, Y( 11) is always !arger (in the symmetric case, individual yield is 
also !arger). 

An important characteristic of the cooperative equilibrium is that, 
unlike the NES, it is unstable to unilateral cheating. Either party can gain 
fitness by increasing its switching time, provided the other does not. Geneti
cally, the system is unstable to small asymmetries in the parameter values, 
and in particular to asymmetries in relatedness. 

Next Iet us consider the case of asymmetric degrees of relatedness, 
7] 12 ~ 1121 . This situation occurs in ferns and algae where diploid sporato
phytes can coexist and compete with haploid gameotophytes, as weil as 
hymenopteran insects (Oster et al., Ref. 13). 

lf 7] 12 > 7] 21 then plant 1 has a gr_eater genetic interest in 2 than 2 has 
in 1. One might then expect plant 1 to act more "altruistically" than 2 in 
the sense of forgoing possible resource utilization. Indeed, the NES to the 
differential game model predicts that the bang-bang strategy for each plant 
is still optimal. However, the plant with the !arger 7],1 ( the "altruist") switches 
earlier, permitting the "selfish" plant to grow to a !arger biomass before 
switching to seed production, thus enabling the selfish plant to produce 
more seed by season's end. The state trajectories for the asymmetric case 
are shown in Fig. 7.9. The actual switching times must be computed numeri
cally. Clearly, if this situation persisted season after season, the frequency 
of the altruist would decrease, leaving only symmetrically related "selfish" 
individuals. In the next section we shall see one way in which such a 
competitive exclusion can be prevented. As a prelude to that model we can 
use the present model to investigate how relatedness affects the joint produc
tivity of both genotypes. In Fig. 7.10 we have plotted the total seed yield 
Y(1112, 1121) = 5 1(1) + S2(1) for 0 ~ 1]~:2 , 1] 21 ~ 1. The maximum group 
fitness occurs at 7] 12 = 1]21 = 1, the minimum at 7] 12 = 1]21 = 0, and Y 
increases monotonically along the diagonal 7] 12 = 7] 21 • In directions normal 
to the diagonal fitness decreases, so that the joint productivity is always 
greater the more symmetrically related the genotypes. Moreover, if we fix 
7] 21 , the group fitness increases as 7] 12 increases, reaching a maximum in 
(0, 1), and then decreasing. Thus there is an optimum Ievel of asymmetry 
("altruism") beyond which group fitness decreases. In Figs. 7.11a, b we 
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have plotted the locus of these optima for two values of assimilation rate, 
r, and season length, T. The shape ofthese curves suggests that lang seasons 
and/ or high productivity operates against altruistic asymmetry in related
ness. However, as the figure shows, the changes in group optimal produc
tivity are relatively insensitive to changes in r or T. 

Fig. 7.9. State trajectories for the 
asymmetric case. 

7]2 > "7, 
Ployer 2 is Altruist 
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c 

Fig. 7.10. Total seed yield Y(7] 12 ,7) 21 ) = S1(i)+S,il) forO~ 7) 12 , 1) 21 ~I. 

7.6. Group and Kin Selection: Multiseason Strategies in a Patchy 
Environment 

In the preceding section we saw that asymmetric degrees of relatedness 
led to reproductive strategies that selected against the altruist (i.e., the 
individual with the higher relatedness coefficient). If the one-season game 
were replayed each year the frequency of altruist types would decrease 
monotonically. In this section we shall show how a patchy environment 
can stabilize a polymorphism between altruist and nonaltruist types via a 
type of group selection. Our model is a generalization of one proposed by 
Cohen and Eshel (Ref. 16) for the evolution of altruistic traits. 

We shall continue to assume that there are but two plant genotypes. 
Now, however, we consider a habitat subdivided into a !arge number of 
isolated patches. During each season competition between the two types 
proceeds as before, but there is no competition between plants in different 
patches. If there are N plants in a patch we shall model the situation as 
an N-player game in each patch with "coalitions" among the two groups 
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of players. Members of each group are identified by the degree of their 
genetic relatedness to the members of their own and the other group. We 
assume that the game between the two types of plants is continued by their 
descendants season after season. This is in cantrast to Section 7.3, where 
the competition is between members of the same cohort year after year. 
The only interaction between the patches occurs at the end of each season 
when the seeds are randomly dispersed over all of the patches. Thus the 
proportion of each type of plant in the whole population in a given season 
is determined by the amount of seed produced by their ancestors in the 
preceding seasons. The questions weshall address are: (1) How does this 
proportion change season after season? (2) Under what conditions would 
one type dominate the habitat? (3) Is stable coexistence between the two 
types possible? 

7.6.1. The Model. For simplicity, weshall assume that the number of 
plants, N, in each patch is fixed and that the different types of seeds have 
an equal chance of colonizing each patch, independently of the other seeds. 
Let x be the proportion of type S1 seeds in the entire population at the 
time of dispersal. Denote by a(m, n, x) the probability that m of type S~> 
and n of type S2 , colonize a particular patch. The simplest model for 
independent colonization is the binomial 

a(m, n, x) = 0, if m + n'"' N 
(7.31) 

ifm + n = N 

where y = 1 - x. 
After each colonization period, Iet P;(t) and s;(t), i = 1, ... , m be 

the biomass and seed production ofthe ith individual oftype 1, respectively, 
and Iet P~( t) and S~( t ), j = 1, ... , n, denote the same quantities for the jth 
individual of type P2 • Then the equations governing the growth and seed 
production of each plant can be generalized to 

P; = [r- kt P~(t)-
1
t P~(t) J u,(t)P;(t), 

k,o J 

i = 1, ... , m (7.32a) 

p~ = [r- J
1 
P~(t)-

1
t P;(t)Jvi(t)P~(t), 

[,Oj 

j = 1, ... , n (7.32b) 
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s; = [r- Jt P~(t)-
1
t

1 
Pb(t) ][1- u;(t)]P;(t), 

k,<i 

i = 1, ... , m (7.32c) 

S~ = [r- kt P~(t)- t Pb(t) }1- vj(t)]P~(t), 
/,<j 

j=1, ... ,n tE[0,1], (7.32d) 

where ( ·) denotes differentiation with respect to normalized time t E [0, 1] 
and U; E [0, 1], i = 1, ... , m, vj E [0, 1], j = 1, ... , n, are defined as before. 
The initial conditions are 

for all i and all j (7.33) 

Now Iet us assume that individuals of type P1 are genetically related 
to individuals of their own type by a factor 77 11 E [0, 1], and with those of 
type P2 by a factor 7] 12 E [0, 1]. Similarly, the parameters for type P2 

individuals are 7722 E [0, 1] and 7721 E [0, 1]. Thus the inclusive fitness for 
the ith individual of type P 1 and jth individual of type P2 is 

1; = s; + 77tt I s~ + 1112 f: s;, i = 1, ... , m (7.34) 
k~l l~t 

k,<l 

and 
m n 

1~ = s~ + 1121 I s~ + 1122 I s;, j = 1, ... , n 
l~t k~t 

k,<j 

respectively, where 

S1 ~ S{(l) = f S{(t) dt (7 .35) 

The optimization problern involves choosing ut( · ), i = 1, ... , m and 
vf( · ), j = 1, ... , n, such that 

J~(uf( · ), ... , u':;,( · ), vf( · ), ... , v~( · )) 

~ J~(uf( · ), ... , uk( · ), ... , u':;,( · ), vf( · ), ... , v~( · )), 

k = 1, ... , m, for all admissible uk( ·) (7.36a) 

I;(uf( · ), ... , u':;,( · ), vf( · ), ... , v~( · )) 

~ J; ( U f ( · ) , ... , U ':;, ( • ) , V f ( · ) , ... , V1 ( • ) , •.• , V~ ( • ) ) , 

I= 1, ... , n, for all admissible v1( ·) (7.36b) 
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In other words we would like to find a Nash equilibrium strategy N-tuple 
( u1( · ), ... , u~( · ), v1( · ), ... , v~( ·) ). 

7.6.2. A Difference Equation for the Yearly Change in Frequency, x. Let 
us now review Cohen and Eshel's rules by which the frequency x of one 
of the types, say P 1 , changes in the entire population from one season to 
the next. 

Let h(x) and g(x) be the average amount oftype P1 and type P2 seeds, 
respectively, produced by the whole community by the end of a given 
season. Using (7.31), these are given by 

(7.37a) 

(7.37b) 

where S';' and S'; are defined as the total amount of seed produced by type 
P 1 and type P2 plants in a patch, respectively, if the number of type P 1 

plants in that patch is m. Thus the relative frequency of type P1 seeds in 
the entire community after one season of growth and seed production is 

h(x) ~ 
x' = h(x) + g(x) = f(x) (7.38) 

The mapping x f--4 f(x) defined by Eq. (7.38) is a difference equation with 
time steps of one season. Given the proportion xk of type P 1 at the beginning 
of the kth season, its proportion at the beginning of the k + 1st season, 
xk+t, can be determined from Eq. (7.38). Figure 7.12 shows a typical graph 
of x f--4 f(x) in the unit square. Its intersection points with the diagonalline 
(i.e., the identity map) are the equilibria ofthe system. Since h(O) = g( 1) = 0, 
we have 

j(O) = 0 

f(l) = 1 
(7.39) 

Thus, the monomorphic points x = 0 and x = 1 are equilibria ofthe system. 
A fixed point x = x with j(x) = x is said tobe a stable equilibrium if small 
perturbations, tSx, in the proportion of type 1 in both directions, tends to 
diminish. Geometrically, this means that the graph of x f--4 f(x) intersects 
the identity map with a slope less than unity. That is, x = 0 is stable only if 

lf'(O)I = lh'(O)/ g(O)I ~ 1 (7.40) 



www.manaraa.com

Competition, Kin Selection, Evolutionary Stable Strategies 

A 

X tS 

uns t o bl e 

A 

X= 0 is 
stoble 

1 
• 

0 X 

.7 
X= 1 

·,s stcble 

Fig. 7.12. A typical graph of x >--> f(x) in the unit square. 

and x = 1 is stable only if 

f'(l) = g'(l)/ h(l) ~ 1 

207 

(7.41) 

where ( · )' denotes d( · )/ dx. An inner equilibrium x = f(x), if it exists, is 
stable only if 

o - x)h'(x) - xg'(x) < h(x)/ x (7.42) 

If we substitute (7 .37) into (7 .40) and (7.41), the conditions for the stability 
of the monomorphic points x = 0, 1 become 

X = 0 is stable only if S) ~ s~ (7.43) 

x = 1 is stable only if s;-'- 1 ~Si" (7.44) 

7.6.3. Stability of Monomorphic and Polymorphie Equilibria. The sta
bility of the monomorphic equilibria x = 0 and x = 1 and the existence of 
polymorphic equilibria and their stability depend crucially on the dynamics 
ofthe growth and seed production within each season as weil as the inclusive 
fitnesses within each patch. From the viewpoint of natural selection, a 
player, in order to maximize its inclusive fitness, must choose a NES (if 
one exists) in allocating bis effort to growth or seed production. Thus the 
overall dynamics for the growth and seed production in a patch, and the 
resulting changes in the frequency of the two types of plants is determined 
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only after a NES is substituted into the dynamical equations (7.37) and
after integrating them-the resulting difference equation (7 .38) is solved. 
Unfortunately these strategies cannot be obtained in closed form. For simple 
population dynamics, especially designed for closed form solutions, Cohen 
and Eshel obtained some analytical results. However, their models do not 
include any notion of competition or optimality. Here we hope to demon
strate, by means of two simple examples and numerical solutions, the 
importance of the periodic statistical mixing described above in the estab
lishment and evolution of one type of plant when the habitat is dominated 
by the other type. We consider two special cases of Eqs. (7.34): 

A. The inclusive fitnesses for types P 1 and P 2 are 

respectively. 

m 

1~ = s~ + 7711 I s~. 
k~I 

k#t 

n 

1~ = s~ + 7722 I s~. 
1~1 

[,<] 

i = 1, ... , m 

j = 1, ... , n 

B. The inclusive fitnesses for types P 1 and P 2 are 

respectively. 

m n 

1~ = s~ + 7711 I s~ + 7712 I s~. 
k~ I I~ I 
k~t 

n 

li = Si+ 7122 L Si, 
1~1 

["<; 

i = 1, ... , m 

j = 1, ... , n 

(7.45) 

(7.46) 

In solving the differential gameproblern described by Eqs. (7.32)-(7.34) 
we assume that the strategy available to each player is its switching time, 
7; E [0, 1 ], from growth to seed production. In other words, we Iet the class 
of admissible strategies be the bang-bang controls with at most one switch 
from 1 to 0. With this assumption players of one type, in order to play 
optimally, must all switch at the same time. Therefore, we essentially reduce 
our differential game problern to the static game problern of finding a pair 
of switching tim es (Ti, Tf) such that 

for all T 1 E [0, 1] 

forall T 2 E [0, 1] 
(7.47) 

where 11 ( 7 1 , Ti, Tn is the fitness obtained by a player oftype P, if it switches 
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nonoptimally at r 1 while all other players of type P1 and type P2 switch 
optimally at rf and rf, respectively. 12( rf, rf, r 2) is defined similarly. A 
necessary condition for ( rf, rf) tobe optimal (in the sense of Nash) is then 
given by 

(7.48) 

Note that J~( rf, rt} = 11 ( rf, rf), k = 1, ... , m, and that J~( rf, rt} = 
Ji rf, rf), 1 = 1, ... , n. 

Case A. Suppose that a habitat is initially populated only by one type 
of plant, P1 or P2 • Each type is identified by its inclusive fitness given by 
Eqs. (7.47). Both types have the same initial biomass, P0 , and growth rate, 
r. The only difference between the two types of plants is in their genetic 
relatedness to the other members of their own group. Type P1 individuals 
are related by a factor 17 11 E (0, 1], while type P2 individuals are related by 
a factor 1722 E (0, 1], 1722 -;t. 17 11 • Neither type shares any genes with the other 
type. That is, 17 12 = 1721 = 0. Since x denotes the proportion of type P1 , if 
the population is initially dominated by this type of plant we have x = 1, 
while if the initial population is entirely of type P2 we have x = 0. x = 0 
and x = 1 are equilibria of the system. The stability of these equilibrium 
points can be determined from Eqs. (7.43) and (7.44). Tables 7.1 and 7.2 
summarize our numerical results. When the argument is not specified,f'( ·) 

Table 7.1. End-Point Stability in the Essentially Symmetrical 
Case 

R = 1.5, N = 3, P0 = 0.1 R = 3, N = 10, P0 = 0.1 

11 f'(.) f'(.) 

0.1 0.9986 1.0044 
0.2 0.9977 1.0172 
0.3 0.9971 1.0366 
0.4 0.9969 1.0614 
0.5 0.9970 1.0906 
0.6 0.9976 1.1233 
0.7 0.9984 1.1590 
0.8 0.9995 1.1971 
0.9 1.0010 1.2372 
1.0 1.0027 1.2790 
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Table 7.2. End-Point Stability in the 
Extreme Asymmetrical Case 

1) 1 = I, 172 = 0.5, P0 = 0.1 
R N J'(O) f'(l) 

1.5 3 0.9970 1.0027 
3 3 0.9945 1.0120 

3 0.9978 1.0764 
5 5 1.0918 1.2860 
5 10 1.2322 1.6233 

denotes the slope of x ~ f(x) at both x = 0 and x = 1. It is seen that, 
depending on the value of the parameter sets ( r, P0 , N, 71 1 , 77 2), x = 0 and 
x = 1 can become both stable and unstable. Remernher that if f'( ·) < 1, 
the monomorphic point in the argument of f'( ·) is stable and if f'( ·) > 1 
the equilibrium is unstable. When r is above 3 and N is !arger than 5, both 
edges X = 1 and X = 0 are unstable. Since r = r. T, this suggests that in 
habitats with Ionger seasons, and consequently higher population, natural 
selection favors diversity: Both species coexist. In other words, as a habitat 
becomes more populated it becomes more susceptible to colonization by 
the inferior type. Note that if both edges are unstable one can expect at 
least one stable inner equilibrium x E (0, 1). 

In sparsely populated habitats with short seasons, or plants with low 
growth rate, the genetic relatedness factor 71,1 becomes the decisive factor. 
If both types are strongly related, for example 77 1 = 1, 77 2 = 1, once again 
both edges become unstable with at least one stable inner equilibrium. If, 
on the other hand, both types are weakly related, for example 77 1 = 0.1, 
77 2 = 0.1, both edges become stable. Thus, one can expect at least one 
unstable inner equilibrium in (0, 1). Finally, if plants of one type possess 
a high coefficient of relatedness, say 77 1 = 1, while plants of other types are 
less strongly related, say 77 2 = 0.5, then x = 1 becomes unstable while x = 0 
becomes stable. Therefore, one species, if its growth rate is low, is more 
likely to dominate in a sparsely populated habitat. A species with lower 
genetic relatedness is more favored with respect to colonizing the whole 
habitat. 

Case B. Now Iet us consider the extreme asymmetrical case: Assurne 
that one of the plant types, say P1 , shares some of the genes carried by 
type P2 , while type P2 is related only to individuals of its own type. That 
is, 71t~o 77 22 E (0, 1). From Table 7.2 it is seen that, for the numerical 
parameters we have examined, x = 1 is always unstable, and x = 0 is always 
stable. We also note that the effect of this unilateral relatedness of type P1 
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to type P2 promotesanadditional instability at x = 1, by increasing f'(l), 
and adds stability to x = 0, by decreasingf'(O), as compared to the previous 
case. 

Thus we see that the outcome of a competitive situation can be altered 
dramatically by adding the feature of periodic recolonization in a patchy 
environment. An interesting extension of this model would be to allow the 
population to consist of perennials as in Section 7.3 so that each patch 
consists of several age clas_ses. In such a case we still expect the growth 
dynamics and season length to play a critical role in determining whether 
coexistence is possible. 

7.7. Discussion 

Classical competition theory has dealt mostly with the conditions for 
competitive coexistence of species without regard to how coexistence 
actually evolves. Here we have attempted to take competition theory one 
step closer to its genetic substrate by supplying each competitor with a dass 
of strategic alternatives and then enquiring how each should behave so as 
to coexist stably with the other. By adding controllable parameters to 
competition equations we were led to view the coexistence problern from 
the viewpoint of differential game theory. Using the notion of a Nash, or 
competitive equilibrium from game theory we were able to investigate the 
evohitionarily stable strategies for a number of simple situations. By restrict
ing ourselves to annually breeding organisms with bilinear population 
dynamics we reduced the search for strategic equilibria to games of resource 
allocation and timing. That is, the optimal strategies turned out to be all 
or none, so that the only strategic parameter in our plant example was the 
switching time from vegetative growth to seed production. While this is a 
fairly common type of reproductive strategy in annual plants (cf. Cohen, 
Refs. 7, 16) the same kind of strategy is observed in social insects ( cf. Oster 
and Wilson, Ref. 17), and to some approximation in other organisms as weiL 

When the model is extended to perennial plants the overwinter survival 
probability determines the season wherein reproduction first occurs as well 
as the switching time within each season. 

For two annually reproducing competitors we found that the ESS 
corresponded to a switch to seed production earlier in the season than 
without competition. The switching time for cooperative behavior was even 
earlier than the competitive switching time, but the cooperative solution is 
not evolutionarily stable. 

Next we studied the effects of kin selection on competitive coexistence 
by making the competitors genetically related. We found that the system 



www.manaraa.com

212 M. Mirmirani and G. Oster 

was not evolutionarily stable to small asymmetries in genetic relatedness 
( e.g., haplodiploidy, budding versus sexual reproduction). The individual 
with the higher degree of relatedness cannot do better than to adopt a Nash 
switching time earlier than its competitor. This allows the "selfish" plant 
to switch Iater, and so produce more seed by season's end. Thus, over many 
seasons the frequency of the "altruist" decreases. 

Finally, we investigated the effect of a patchy environment on competi
tive coexistence. We found that seasonal dispersal and recolonization could 
stabilize the presence of an altruistic genotype, providing the growth rates 
and season lengths were suitable, and providing that a Nash switching time 
is adopted within each season. Thus there is an intimate link between the 
short time scale (seasonal) strategy and the long time scale evolutionary 
equilibrium. This phenomenon of stabilization by periodic statistical mixing 
has been noted by several authors in various settings and is a potentially 
important ecological and evolutionary mechanism (Eshel, Ref. 18, Cohen 
and Eshel, Ref. 16; Matessi and Jayakar, Ref. 19; Wilson, Ref. 20; Koch, 
Ref. 21). 

Throughout this study we have not addressed either the problern of 
how the optimal switching strategies were implemented (i.e., the physiologi
cal mechanism, such as a circadian clock) nor the genetic dynamics that 
presumably control the switching parameter in the model. The former issue 
need not concern us at the Ievel of our demographic models, but the latter 
is a much more serious issue. When genetic dynamics are explicitly included 
in demographic models it is not difficult to produce situations where there 
is no evolutionarily stable strategy in the usual sense (Auslander et al., Ref. 
11). Therefore, before one accepts uncritically the results of "strategic" 
models such as those we have developed here, one must always bear in 
mind that the genetic constraints may preclude the adoption ofthe "optimal" 
strategy. In a subsequent publication we shall investigate the effect on the 
ESS of forcing the strategic parameters to obey one-locus and polygenic 
dynamical constraints. 

Appendix 

1. Optimal Reproductive Strategy over Many Seasons. The problern 
formulated in Section 7.3.1 is an optimal control problern with discon
tinuities in the state variables. However, in this case, because the time 
interval for each stage (i.e., each season) is the same and boundary and 
state coupling conditions are simple, the multistage problern can be put in 
the usual optimal control format, simply by assuming only one interval of 
definitions, [0, 1] and 2N states. However, when the problern is solved, the 
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initial conditions must be chosen so that conditions (708) are satisfiedo 1t 
can be shown ( cfo Mirmirani, Refo 22) that the optimal control in each 
season is bang-bang with at most one switch from u~ = 1 to uf = 0, 
i = 1, 2, 0 0 0, N. 1t only remains to compute the optimal switching times, 
i = 1, 0 0 0, No 

Let us assume that the switching time in the ith season is Tj E (0, 1)0 
Then we integrate the state Eqso (706) and (707) and obtain the expected 
seed production as function of ri's and p only 

] = rPo[i i- 1(1- 7 1 ) e'L;~,r, J (A.l) 

A necessary condition for J to have a maximum at 7* ~ ( rf, ri, 0 0 0 , r1.r ), 
d E (0, 1) is 

i = 1, 2, 0 0 0, N 

Equation (Ao2) can be shown to reduce to the recursive equations 

r(l - T1.r) - 1 = 0, 

i = N -1,0 0 o, 1 

(Ao2) 

(A.3) 

For each N, Eqso (A.3) can be solved in a backward recursive manner to 
determine the optimal switching times rf, j = 1, 2, 0 0 0, N. However, some 
important properties of these solutions can be deduced directlyo For con
venience Iet us relabel rf's such that 

Thus Eqso (A.3) can be written as 

r(l- rn- 1 = 0 

r(l - rt) + pe'r~_,- 1 = 0 

(A.4) 

(A.5) 

Proposition 7.1. For N > 1, Iet { r7};': 1 denote the sequence of optimal 
switching tim es [solutions of (Ao4 )]o Then { Tt} is a monotonically increasing 
sequenceo 

Proof. From (Ao5) it follows that 

rrf = r- 1 
and that 

Hence r 2 > T 1 0 Subtracting (Ao5) for i + 1 from (A.5) for i we have 

r(rf+,- rt) = p(e'r~- e'r~_,) 

(A.6) 

(A.7) 

(A.8) 
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Thus if T~ > T~-~o from (A.8) it follows that T~+t > T~. By induction on i 
the proposition is proved. D 

Proposition 7.2. For N > 1 Iet PN-t be defined as the probability of 
survival between two consecutive seasons such that there is a switch in 
every season except the first and consider the sequence {PN- 1}. Then {PN- 1} 

converges to e-' as N ~ oo. 

Proof. By definition and Eq. (A.7) {PN-t} = {e_,..,.:t,_,}. Thus by Propo
sition 1; {PN-t} is a monotonically decreasing sequence that is bounded 
from below, hence it converges. To find the Iimit, note that for N = 2 

-r-r* -r+l -17 Pt= e '= e = e 

where Tl = r - 1. For N = 3 

P2 = e-rT~ = e[(l-r)-p,ent] = e-(T/+p,e") 

Similarly we find 

N- 1 times 

I I 
PN-1 = exp{- [ T/ + PN-1 exp( T/ + · · ·)]} 

Since PN-I converges we can write 

!im PN-1 = ß- exp{ - [Tl + ß exp( Tl+ · · ·)]} 
N~x 

Taking Iogs of both sides we have 

Hence 

In ß = -Tl - ß exp[ Tl + ß exp( Tl + · · ·)] 

Inp =-Tl- p(l/p) = - (T/ + 1) = -r 

(A.9) 

(A.lO) 

(All) 

(A.12) 

(A.13) 

(A.14) 

(A.15) 
D 

Proposition 7.3. For N > 1, T~ is the optimal switching time in the 
first season (remember the change of indices). The sequence { T~} converge 
to a Iimit. 

Proof. For p < ß we have 1 - pn-N* > 0 for all N (by Proposition 
(7.2) for p < p there is a switch in every season); thus e,..,.N* < 1/ p. Therefore 
{ T~} is a monotonically increasing sequence that is bounded from above; 
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hence it converges. It is easily seen that 

N times 

I I 
rTt-, = YJ + p exp[ YJ + p exp( YJ + · · ·)] 

(A.16) 

Since { Tt} converges we can write 

lim rTt-, = rT* = YJ + p,ry (A.17) 
N~oo 

where 

,ry = exp[ YJ + p exp( YJ + · · · )] (A.18) 

Thus 

In ,ry = YJ + p,ry (A.19) 

Substituting (A.19) in (A.17) we have 

T* = (1/r) In ,ry (A.20) 

For p ~ ß it can be shown that (cf. Mirmirani, Ref. 22) if in solving Eqs. 

(A.5) one finds that T'(' ~ 1 for some i E {1, 2, ... , N} then the optimal 

switching vector is 

(A.21) 

Sufficiency. For N > 1 we showed that the multiseason problern can 

be transformed to abilinear optimal control problern with 2N state variables 

and fixed time. Using the sufficiency conditions of Leitmann and Stalford 

(Ref. 23) the optimality of the bang-bang control can be verified ( cf. Perelson 

et al., Ref. 10). However, for the limiting case N ~ oo, we cannot utilize 

these conditions and the limiting switching time should be considered only 
as an extremal value. D 

A.2. The Optimal Strategy for Competing Plants. The differential 

game problern formulated in Section 7.4.1 for competition between two 
identical plants is as follows: 

For i = 1, 2, Player i wishes to choose his control u, ( · ) so as to maximize 

1, = f S,(t) dt = S,(l) (A.22) 
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subject to the dynamical constraints 

PI= [r- Pz(t)]u1(t)P1(t) 

Pz = [ r - P1 ( t)] U2( t) P2( t) 

S\ = [r- P2(t)][l- u 1(t)]P1(t) 

S2 = [r- P1(t)][l- u2(t)]P2(t) 

P1(0) = P2(0) = P0 > 0 

5 1(0) = 52(0) = 0 

tE[O,l] (A.23) 

(A.24) 

We assume that the players seek a Nash equilibrium solution as defined in 
Section 7.4.1. Necessary conditions for Nash strategies in differential games 
are given by Case (Ref. 24), Starrand Ho (Ref. 25), and Leitmann (Ref. 26). 
Generallythese conditions are for strategies that are state dependent ( closed 
loop ). However, assuming that strategies available to each player are only 
functions of time, an N-player differential game reduces simply to N 
simultaneous optimal control problems, which can be solved utilizing the 
maximum principle. In the following we refer to these strategies as "open
loop Nash equilibrium" strategies. 

A.3. Necessary Conditions for Open Loop Nash Equilibria. Let A and 
t!J be the adjoint vectors associated with Players 1 and 2, respectively. Then 
H 1 and H 2 , the Hamiltonians associated with these players, are 

H 1 = (r- P2)(1- u1)P1 + A1(r- P2 )u1P1 + A2(r- P1)u2 P2 

H 2 = (r- P1)(1- u2)P2 + l/!1(r- P2)u1P1 + l/!2(r- P1)u2P2 

Factoring out u1 in H 1 and u2 in H 2 , we have 

H 1 = P1(r- P2)(A 1 - l)u1 + P1(r- P2 ) + A2(r- P1)uzP2 

H 2 = P2(r- P1)(1/J2 - l)u2 + P2(r- P1) + I/J1(r- P2)u1P1 

(A.25) 

(A.26) 

If ( uf( · ), u~( ·)) is an open loop equilibrium strategy pair then there exist 
continuous nonzero vectors A.( ·) and w( · ), which are solutions of equations 

. aH1 
A1 = - aP

1 
= - (r- Pz)(l- u1 )- (r- P2)u 1A1 + P2 u2A2 

aH 1 

Az = --- = P1(1- u1) + P1u1A1- (r- P1)u2 A2 aP2 

(A.27) 
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aP2 

with boundary conditions 

A1(1) = A2(1) = 0 

ifJJ(l) = 1/12(1) = 0 
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(A.28) 

(A.29) 

and such that H 1 and H 2 are maximized with respect to u1 and u2 , 

respectively, by uf(t) and uf(t) for all t E [0, 1]. Therefore, since (r- P 1) 

and (r- P2) are assumed to be positive for allE [0, 1], ut( 0
) and uf( o) 

must satisfy 

where 

{ 
1, 

ut(t) = E [0, 1], 

0, 

{ 
1, 

uf(t) = E [0, 1], 

0, 

ifu1(t)>O 

if <TJ(t) = 0 

if <TJ(t) < 0 

ifu2(t)>O 

ifu2(t) = 0 

ifu2(t)<O 

u 1(t) = A1(t)- 1 

u 2(t) = 1/12(t)- 1 

(Ao30) 

(A.31) 

In order to compute u 1( 0
) and u 2( o) we must proceed with integrating the 

adjoint equations Ä and .;, backward starting from t = 1. However, in this 
case, because ofthe complete symmetry, it is clear that ut( o) = uf( o )o Thus 
we need to compute only u 1 ( 0

) and determine uf( o )o lf 

and 

u*( 0) ~ uf( 0) = uf( 0) 

u( o) ~ u 1( o) = uk) 

u(l) = A1(1) -1 = -1 < 0 

(A.32) 

(A.33) 

Thus u*(t) = 0 on some terminal interval I~ [0, 1]. Substituting u = u* = 0 
in Eqso (Ao23) and integrating backward with 

P 1(1) = Pil) ~ P, t E I (A.34) 

we obtain 

P1(t) = Pit) = P = const, t E I (Ao35) 
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If we substitute u = u* = 0 and Eq. {A.35) in Eqs. (A.27) and integrate 
backward with boundary conditions (A.29) we have 

A1(t) = (r- P)(l- t), 

Thus 

0'1(t) = (r- P)(l- t)- 1, 

If r- P > 1, then 0'1( r*) = 0 for 

r* = 1- [1/(r- P)] 

t EI 

t EI (A.36) 

(A.37) 

with a switch from u* = 0 to u* = 1. We must continue to integrate the 
state and the adjoint equations backwards with u = u* = 1. The adjoint 
equations reduce to 

Ä1 = - [r- P(t)]A 1 + P(t)A 2 , 

with boundary conditions 

A1(r*) = 1 

A2 ( r*) = -P/(r- P) 

where P( · ) 4, P1 ( • ) = P2( • ) is the solution of 

t ~ r* 

P(t) = [r- P(t)]P(t), t ~ r* 

with boundary condition 

P(O) =Po 

(A.38) 

(A.39) 

(A.40) 

The solutions to Eqs. (A.38) have the property that A1(t) > 1 for all 
t < r* (cf. Mirmirani, Ref. 27). Therefore r(t) > 0, t E [0, r*] and u* = 1, 
t E [0, r*]. 

We conclude that for two identical plants the extremal competitive 
strategy is 

u*(t) 4, uf(t) = uf(t) = 1, 0;;:: t < r* 

= 0, r* ~ t;;:: 1 
(A.41) 

If we integrate the state equations (A.23) with uf = uf = 1 and with initial 
conditions (A.24) on the interval [0, T*] we have 

_ *) _ rP0 

P- P(T - (r- P0 )e-rr* +Po (A.42) 
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Equation (A.42) together with (A.37) determine the switching surface 2c. 
If we eliminate P( T*) from these equations we have 

g* = 1- T* (A.43) 

which can be solved numerically to yield the extremal switching time T*. 
If we assume P10 > P20 , or r1 > r2 , where r1 and r2 are normalized 

assimilation rates for plant 1 and plant 2, respectively, the above symmetry 
among the strategies does not exist. The player with higher biomass or 
higher assimilation rate switches to seed production later in the season. For 
example, if P10 > P20 and the assimilation rates equal, by assuming the final 
biomass, P, ~ P1 ( T), of the plant with !arger initial biomass is greater than 
the final biomass, P2 ~ P2 ( T), of the plant with smaller biomass, and by 
employing identical arguments as those for the symmetric case, one can 
show that 

uf(t) = r· 0 ;2 t < Tt 
0, Tt ;2 t ;2 1 

0 ;2 t ;2 TI 
(A.44) 

ui(t) = c· 0, TI ;2 t ;2 1 

where Tf > TI together with P1 > P2 are solutions ofthe two transeendental 
equations 

1 
T*+---1 =0 

1 r _ p2 

(A.45) 

resulting from backward integration of the adjoint equations together with 
the solution of differential equation 

P,(t) = [r- P2(t)]P1(t), 

P2(t) = [r- P1(t)]P2(t), (A.46) 

and equation 

(A.47) 
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Note that the final biomass of plant 2, P2 is equal to the P2 ( t) component 
of the solution of differential equation (A.46) when evaluated at t = Tf, 
and that P 1 is equal to P 1(t) in (A.47) when evaluated at t =Ti. 

If one initially assumes that P2 > P 1 , he can show that the optimal 
strategy is again given by (A.44). Butthis time Tf > Tf. Tt, Tf, PI> and P2 
can be obtained from (A.45) to (A.47) if one exchanges P 1 and P2 , and Tt 
and Ti. However, numerical computations show that if P10 > P20 , (A.45) 
to (A.47) have acceptable solutions, that is, Tf E [0, 1), Tf E [0, 1) only if 
one assumes P 1 > P2 . Similarly, if P20 > P 10 , one must assume P2 > P 1 in 
order to obtain acceptable solutions for Tt and Tf. 

A.4. Symmetrical Genetic Relatedness. 

11 =SI+ TJ52 

12 = 52 + TJ51 

If we assume that 

(A.48) 

the Hamiltonians and the adjoint equations for each player change accord
ingly. However, we can proceed exactly as in the case of two unrelated 
players and prove that 

ut(t) = uf(t) = 1, 

= 0, 

0;:::: t < T~ 

T~ ;:::: t ;:::: 1 

Only the switching time given by (A.22) changes to 

1 
T* = 1------

'1 r-(l+Y))P 

(A.49) 

(A.50) 

where P ~ P( T). Thus T~, the extremal switching time, must be obtained 
by eliminating P from (A.50) and (A.42) which results in 

* r~* P0 YJe' * 1 rt* P0 e' g e · ,, - -- g '1 -- e ,, - = 0; 
r - P0 r r( r - P0 ) 

g~ = 1 - T~ (A.51) 

A.5. Asymmetrical Genetic Relatedness. For the case of asymmetric 
fitness 

11 =51+ TJ1S2 

12 = S2 + TJ2S1 
(A.52) 

the Hamiltonians (A.26) and the adjoint equations (A.27) and (A.28) must 
be changed accordingly. Following the same argument as in the previous 
cases we can show that there is at most one switch for each player. If 
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TJ 1 > TJz the first player switches first and if TJ 2 > TJ 1 the second player 
switches first. The two transeendental equations 

(A.53) 

resulting from backward integration of the adjoint equations together with 

and 

rP0 p - -----=-----:;:---
2- (r- Po)e-rrt +Po (A.54) 

(A.55) 

can be solved for 7'/', TI, P1 , P2 where P1 ~ P1 (1 ), P2 ~ P2(1 ). However, 
here we adopt a different numerical procedure for obtaining Tt and Tf. 
Our results are based on the numerical solution of simultaneaus nonlinear 
equations 

_j__Jl(TJ,Tr)l =o 
aT] Tt=Tt 

_j_ 12( Tf, T2) I = 0 
BT2 r2 ~ 72 

(A.56) 

where T~> T 2 E (0, 1) are the switching times for players 1 and 2, respectively. 
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Multicriteria Optimization Methods for 
Design of Aircraft Control Systems 

ALBERT A. SCHY 1 AND DANIEL P. GIESY2 

8.1. Introduction 

In the design of airplane control systems, many disparate objectives 
must be considered. The pilot desires rapid, precise, and decoupled response 
to his control inputs, so that natural objective functions for computer-aided 
design (CAD) are computable functions that are useful measures of the 
speed, stability, and coupling of the responses. These response properties 
are often referred to as the handling qualities or flying qualities of the 
airplane. The military has developed a set of specifications for a number 
ofhandling quality functions, and the CAD research described in this paper 
uses objective functions based on these military handling qualities criteria. 
Additional design objective functions have been developed to avoid control 
limiting, since there are always Iimits on available control in any real system, 
and limiting can be destabilizing in an automatic control system. Another 
important property of a good designisthat it be "robust"; that is, the design 
objectives should be insensitive to significant uncertainties in system 
parameters. In fact, such insensitivity is an essential property of any well
designed feedback system. Therefore, a vector of "stochastic sensitivity" 
functions is defined as the vector of probabilities that each "deterministic" 
objective violate specified requirement Iimits, and decreasing sensitivity is 
considered a design objective. If both the deterministic objectives (the 
nominal or expected values) and their sensitivities are considered in the 
design process, the number of objective functions is doubled. Moreover, 
modern airplanes operate over a wide range of speed and altitude, and the 
linearized differential equations that are used to describe the response to 
controls ( the plant dynamic models) are different at each flight condition. 

1 Guidance and Control Division, NASA Langley Research Center, Hampton, Virginia 23665-
5225. 

2 Aerospace Technologies Division, PRC Kentron, Hampton, Virginia 23666-1384. 

225 



www.manaraa.com

226 Albert A. Schy and Daniel P. Giesy 

Conventionally, a discrete set of design flight conditions are chosen. Since 
the requirements on the design objectives must be satisfied at each flight 
condition, in effect, the total number of objectives becomes the sum of the 
number of objectives in each of the flight conditions. 

The multiobjective control system design problern is formulated as a 
constrained minimization (nonlinear programming) problern as follows. 
The designer chooses the form ofthe control system, the variable parameters 
that comprise the design variable vector, the objective functions, and the 
design flight conditions. For stochastically insensitive (SI) design, he must 
also specify the most significant uncertain parameters of the system and 
their statistical distribution function. The multiohjective design is accom
plished by imbedding the objective functions in the constraint vector and 
scalarizing the constrained minimization problern so as to yield solutions 
on the boundary of the achievable domain that are weil balanced in all the 
objectives. The concept of Pareta optimality is particularly useful in develop
ing such scalarized algorithms and in devising efficient methods of tradeoff 
between insensitivity of design objectives and nominal (expected) values 
of the objectives. This paper summarizes the results of several studies in 
which multiobjective design algorithms of increasing sophistication have 
been developed. 

From the foregoing it is clear that these CAD methods can be used 
effectively only by experienced designers. The designer supplies the informa
tion for the proper formulation of the problem, and the Computer carries 
out the computationally demanding searches for corresponding Pareto
optimal solutions, using efficient constrained minimization algorithms. 
These methods do not enable the computer to converge on an optimal 
design in any conventional senseofthat term, but rather permit the designer 
to control a search for well-balanced solutions on the nondominated portion 
of the boundary of achievable solutions. This permits him to examine the 
achievable tradeoffs between the various objectives very efficiently. The 
designer must make the final design choice based on his experience and 
judgment. 

lt may be noted that the SI design method provides insensitivity in 
diverse objectives with respect to specific parameter uncertainties. The need 
for such design methods has been emphasized in several recent papers, 
which have pointed out that current methods of robust system design Iack 
these capabilities (for example, Kosut, Salzwede, and Emami-Naeini, 
Ref. 1). 

The methods described here are considered to be applicable to a broad 
class of system design problems, defined by the following properties: ( 1) 
The system operates over a wide range of conditions, with a corresponding 
wide variation of system dynamic model. (2) At each operating condition 
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there is significant uncertainty in the system model. (3) The quality of the 
system design depends on multiple objective functions. ( 4) There is consider
able uncertainty concerning the set of objectives and criteria that best 
determine the quality of the system. Such problems can be called "complex 
system design problems." Note that the plant dynamic model can be 
relatively simple and low order. The complexity of the design problern is 
characterized by variability and uncertainty in the objectives. Many practical 
design problems are of this type. 

8.2. Aircraft Dynamics and Control 

The formulation of an accurate mathematical model of the dynamic 
response of modern aircraft for arbitrary maneuvers over a wide flight 
regime is a prohibitively difficult task. Computing the aerodynamic flow 
over such a complicated moving surface would at best require the simul
taneaus solution of nonlinear partial differential equations and the Newton
Euler ordinary differential equations of motion, which is beyond current 
computational capabilities. Moreover, even this model ignores such impor
tant effects as boundary layer transition and aeroelastic coupling, for which 
only crude mathematical models are available. Of course, this is the usual 
case in the design of engineering systems, for which accurate mathematical 
models are rarely available. The design of such systems requires the use of 
approximate models of acceptable accuracy for the particular design prob
lern. Therefore, the design of such systems requires experienced designers, 
who can recognize when unmodeled effects may become important, and 
computer-aided design (CAD) methods should be tailored tobe an effective 
aid to such experienced designers. 

The key assumption required to obtain tractable mathematical models 
for the design of airplane control systems is that the aerodynamic flow can 
be considered quasisteady at any instant. This permits the pressures to be 
integrated over the boundary surface to yield instantaneous lumped forces 
and moments for use in the familiar Newton-Euler six-degree-of-freedom 
equations of motion. These six nonlinear second-order ordinary differential 
equations can be reduced to a basic eighth-order set, because they are 
independent of azimuth and position if one assumes constant gravity force 
and a homogeneaus atmosphere (Ref. 2). The variables describing the 
motion are defined with reference to an axis frame fixed in the airplane 
with origin at the center of gravity, as shown in Fig. 8.1. The axes Xb and 
Zb are in the airplane's plane of symmetry. Motion in this plane is called 
longitudinal motion and motionnormal to this plane is called lateral motion. 
These basic equations of motion can be written as first-order differential 
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p 

Fig. 8.1. Variables of airplane motion in body-fixed axes. Arrows indicate positive direction. 

equations in terms of the velocity of the center of gravity, v E IR! 3 , the angular 
velocity of the airplane, w T ~ ( p, q, r ), the Euler angles defining its attitude, 
8 (pitch) and 1> (bank), and the control vector, u(t), as follows: 

v =- W(w)v + g(8, 1>) + FA(v, w, u)/m 

w = -F 1[ W(w)Jw + MA(v, w, u)] (8.1) 

J> = p + ( q sin 1> + r cos 1>) tan 8, iJ = q cos 1> - r sin 1> 

Here the vector gravity acceleration, g( 8, 1> ), is defined by g T ( 8, 1>) ~ 
Jgj(sin 8, cos 8 sin 1>, cos 8 cos 1>), the skew-symmetric matrix W(w) is 

W(w)~[ ~ 
-q 

-r 

0 

p 

1 is the moment of inertia matrix, m is the mass, and FA(·) and MA( ·) are 
the force and moment vectors. The difficulty of determining these aerody
namic forces and moments for a wide ftight regime is the main contributor 
to the uncertainty in the dynamic equation (8.1). 

The dependence ofthese aerodynamic effects on the velocity, v, is more 
conveniently defined in terms of the incidence angles, a (angle of attack), 
and ß (angle of sideslip) in Fig. 8.1, and the Mach number, which is the 
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ratio of the total speed, V0 , to the local speed of sound. The following 
relations can be used to replace v in Eqs. (8.1) or as auxiliary equations. 

v1 = V0 cos a cos ß, v3 = V0 sin a cos ß (8.2) 

Vo = lvl, (8.3) 

These equations are used in computer simulations of the nonlinear 
response of airplanes in arbitrary maneuvers. Such simulators, usually 
controlled by pilots in cockpit mock-ups, are commonly used to validate 
the design of airplanes and their control systems. In modern airplanes the 
pilot utilizes many control devices, but the basic controls are the engine 
throttle and the three controls shown in Fig. 8.1, the ailerons, 8a, the elevator, 
8., and the rudder, 8,. These are primarily moment-producing controls, 
intended to control rolling ( p ), pitching ( q ), and yawing (r), respectively, 
though each produces cross-coupling effects in other degrees of freedom. 
The pilot must use these controls to perform many complicated maneuvers, 
involving control of flight path and attitude. Ta perform these maneuvers 
rapidly and precisely, the pilot must act as an intelligent adaptive element 
in a feedback control system. When the airplane stability and control 
properlies permit the pilot to perform the necessary maneuvers with relative 
ease, the airplane is said to have desirable handling qualities. 

Many decades of research have been devoted to defining computable 
dynamic stability and control properties which can be used as handling 
quality metrics in the design of airplanes and their control systems. To 
develop computable functions that define the handling qualities it is desir
able to have an analytically tractable mathematical model. The nonlinear 
model (8.1) is useful in simulator studies to evaluate handling qualities, but 
it is not amenable to the type of analytical solution required to define 
objective functions for use in design. Handling qualities criteria are derived 
from linear models representing perturbations from equilibrium solutions 
of Eqs. (8.1). 

Equation (8.la) is in the state vector form 

x = F(x, u), XE IR 8 (8.1a) 

The dimension of the control vector is problern dependent. Equilibrium 
solutions for any constant controls, u0 , are obtained by solving the nonlinear 
equations F(x0 , u0 ) = 0. Perturbations from an equilibrium solution are 
described by a linear, constant system of differential equations in the usual 
vector-matrix form 

(8.4) 

Here x and u represent perturbations from x0 and u0 , and [Fx]o and [Fu]o 
are evaluated at x0 and u0 . 
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The generat equilibrium solution of Eqs. (8.1) is a circular spiral motion 
about a vertical axis. The corresponding linear dynamic equations (8.4) are 
a coupled, eighth-order system of linear constant coefficient differential 
equations describing perturbations from steady maneuvering flight. These 
equations have occasionally been used in airplane stability and control 
studies, but are rarely used in control system design. Note that at each flight 
condition not only will the matrices A and B in Eq. (8.4) be different for 
each control setting, u0 , but there will generally be multiple solutions for 
each u0 , because of the nonlinearity of F(x0 , u0 ) = 0. Also, it is difficult 
and costly to obtain accurate aerodynamic coefficients for a wide variety 
of maneuvers. 

Because of these difficulties, control system design is generally based 
on linear perturbation equations from steady straight flight solutions of Eqs. 
(8.1 ), for w 0 = 0. The steady solutionproblern is greatly simplified, involving 
only longitudinal variables, and Eqs. (8.4) decouple into two independent 
sets of fourth-order equations in the longitudinal and lateral variables. These 
fourth-order linear models are the basis of most current airplane control 
system designs. 

Example. Lateral Stability Augmentation System (SAS) Design. 
There are many different kinds of airplane control system design problems 
corresponding to specific ftight tasks of a wide variety of airplane types. 
The example problern chosen for research on multiobjective design 
methods was the design of a lateral stability augmentation system (SAS). 
Modern airplanes tend to have undesirable handling qualities because 
aerodynamic design for efficient performance over a wide ftight regime 
confticts with design for good handling qualities. The purpose of SAS design 
is to modify the dynamic response to pilot control inputs so as to satisfy 
requirements for good handling qualities in all ftight conditions. Since good 
handling qualities are those dynamic response characteristics that permit 
the pilot, acting as an intelligent, adaptive outer-loop controller, to perform 
all necessary mission maneuvers rapidly and precisely, effective SAS design 
is an essential element in control system design for any modern high
performance airplane. This example designproblern is intended to represent 
the essential aspects of the design of airplane control systems while avoiding 
unnecessary computational complexity. These aspects are satisfaction of 
multiple objective requirements (i.e., design criteria) over a wide range of 
ftight conditions, uncertainty in model parameters, and uncertainty in the 
design requirements. 

In each ftight condition, the mathematical model of the controlled plant 
is the linear lateral fourth-order dynamic model. In the lateral subset of 
Eq. (8.4), 

X T ~ (ß, r, p, </J ), (8.5) 
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In most cases to be discussed, the control law has the simple form 

(8.6) 

When Eqs. (8.5) and (8.6) are used in Eq. (8.4), the augmented dynamic 
response is governed by 

X= (A + BK)x + BC5a ~ Ax + B5a (8.7) 
p p 

The scalar 5ar is the pilot's lateral stick input, which is used to roll the 
airplane about the X 8 axis. The pilot closes the outer loop, manipulating 
the cockpit control to get fast, precise response in bank angle, cP, which is 
approximately the integral of roll rate, p. Hence, no bank angle feedback 
is included in Eq. (8.'6). This bankangle control is the primary lateral control 
task, and for simplicity the study has considered this maneuver only, ignoring 
many other aspects that would be considered in a realistic lateral SAS design. 

The design objectives are based on military specifications for desirable 
handling qualities, which have been developed after many years of analysis 
and flight testing and which are continually being revised. Detailed dis
cussion is left to the examples, but in general the ~equirements include 
adequate stability in each mode, rapid and precise bank angle response, 
and de~oupling of this response from yaw-sideslip response. Objectives 
aimed at avoiding controllimiting arealso introduced, since controllimiting 
can be dangerously destabilizing when the airplane is inherently unstable 
or when rate limiting occurs. Finally, a stochastic sensitivity vector is defined 
which can be used as a set of design objectives to obtain robustness of all 
the deterministic objectives to uncertainty in system parameters. Such 
insensitivity to parameter variations is a distingushing feature of any well
designed feedback control system. In general, it is assumed that the designer 
specifies the form of control law, and the design task is to find values of 
the control law parameters that give desirable values for all objectives. In 
controllaw (8.6), the controllaw parameters are the eight elements (gains) 
of K and C. All the design objectives can be computed as functions of the 
designvariables from solutions of Eq. (8.7). They may be properties of the 
solution time histories themselves, or they may be results of frequency 
domain or eigenstructure analysis. The design objectives used in this study 
include time history rise times and peak values, characteristic roots, transfer 
function coefficients, and probability estimates. These objectives are con
sidered tobe a representative set, useful in illustrating multiobjective design 
methods, but they arenot considered definitive. These CAD methods depend 
on the individual designers (or design teams) to choose whatever combina
tion of design objectives best defines system quality. Familiarity with all 
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methods of analysis is desirable, so that the designer can choose useful 
objective functions from each. 

To carry out a multiobjective design over a given set of design flight 
conditions, Eqs. (8.4), (8.6), and (8.7) are used in each flight condition and 
the associated objective functions are calculated. The design objectives 
consist ofthe objectives in all the flight conditions. Effective CAD algorithms 
for airplane control systems should efficiently converge to values of the 
design variables that give desirable, well-balanced values for all objectives 
in all flight conditions. By well-balanced we mean that a reasonable tradeoff 
is made between the demands of the disparate objectives. 

In most examples to be presented the control system parameters are 
assumed fixed over all flight conditions. Since modern aircraft may require 
that control system parameters vary with flight condition, design of 
scheduled parameter systems is illustrated by a simple example in which 
parameters of the scheduling law are made design variables. 

8.3. Description of Methods 

Four design methods of increasing sophistication will be discussed. 
The simpler methods are less computationally costly, and the choice of 
method would depend on system requirements. The methods are based on 
the techniques of multiobjective or multicriteria optimization, and con
strained optimization algorithms are used to obtain solutions. There is one 
important conceptual difference, however, from the usual optimization 
approach. It is taken as axiomatic that there is no useful way to define a 
truly optimal design for such complex, multiobjective problems; that is, 
there is no scalar "superobjective" function that can be minimized to yield 
an optimal multiobjective design. The advantage of optimization methods 
is that they provide the designer with highly efficient computerized search 
algorithms, which permit him to sample solutions on the boundary of the 
achievable domain in an objective function space of his own choosing. This 
permits him to perform the tradeoffs leading to the final design more rapidly 
and effectively. 

The general multiobjective optimization problern can be defined as 
follows (Ref. 3 ). The decision ( design) vector, z, lies in a space f1 ( open) c:; IR" 
and may be subject to fixed vector inequality and equality constraints, 
g(z) ~ 0 and h(z) = 0. The constrained designvariable space is 

Z = {z E [Rn: Z E f1, g(z) ~ 0, h(z) = 0} 

Given a set of objective functions J; (z): Z ~ IR, j = 1, ... , m, the achievable 



www.manaraa.com

Design of Aircraft Control Systems 233 

domain in objective function space is 

E =f(Z) = {e E !Rm: e =f(z), z E Z} 

The general multiobjective optimization problern is to find value(s) z* E Z 
giving values f(z*) = e* E E that are "optimal" in some useful sense. 

Pareto optimality is useful for multiobjective design problems because 
it defines a domain of nondominated solutions on the boundary of the 
achievable domain. A solution z* E Z is Pareto optimal (P.O.) if for each 
z E Z with f(z) ~ f(z*), J;(z) > J;(z*) for some j. Pareto optimality does 
not guarantee good design, however, because a good design should be 
well-balanced in all the objectives, whereas P.O. solutions can be very 
unbalanced. The methods to be described find well-balanced P.O. designs 
by scalarizing the vector optimization problern in various ways. The design 
objectives can then be included in the inequality constraints of an ordinary 
constrained minimization or nonlinear programming (NLP) problem. Tech
niques are developed to vary these constraints to yield sample well-balanced 
P.O. solutions. Algorithms for solving NLP problems can then be used in 
efficient multiobjective CAD, based on tradeoffs between these well
balanced P.O. solutions. 

The NLP program used in most cases was a modified version of an 
accelerated-gradient method developed by Kelley and others (Ref. 4). An 
unpublished quasi- Newton method, using a trust-region strategy developed 
especially for min-max problems, was also used in a few cases with no 
fixed constraints. Thanks are due to Dr. Avi Vardi for providing us with 
an early version of this efficient program. 

8.3.1. Qualitative Index with Varied Constraints on Quantitative Objec
tives. The first method is a deterministic multiobjective method that does 
not explicitly consider parameter uncertainty. The algorithm has the form 

min/0 (z) s.t. f(z) ~ J, Z E Z (8.8) 

Heref(z):!Rn ~ !Rm, f 0(z):!Rn ~IR, and Z c !Rn is the constraint set corre
sponding to the fixed constraints. The vector z is the set of design parameters 
of a fixed-form control system; and the scalar index function, f 0(z), is a 
system property which should be kept small but is notaquantitative measure 
of system quality. In the examples, the sum of the squares of control system 
feedback gains in Eq. (8.6) is used for f 0 (z). The quantitative design 
objectives comprise the vector f(z), and it is assumed that experienced 
designers can define a constant vector, J, such that the constraints in Eq. 
(8.8) guarantee a satisfactory design. If a feasible solution to Eq. (8.8) is 
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Fig. 8.2. Sketch showing types of 
minimum-gain solutions 
as objective constraints 
( ] 2 , i) are varied. 

found, the designers can adjust elements of 1 to seek an improved design. 
This procedure is repeated until an infeasible 1 is specified. Figure 8.2 is a 
sketch illustrating this procedure for two constraint functions in two vari
ables. Constraint loci are shown in z space, for / 0 = z~ + z~ and three values 
of 12 . The values 12., represent the varied requirement. Since the algorithm 
uses an exterior (Courant type) penalty function, an approximate design 
solution is found even when 1 is slightly infeasible. The points P1 , P2 , and 
P3 indicate solutions with varied constraints, 12 ,,. The set 12•3 and 11•1 is 
infeasible. This procedure isarather crude method for seeking P.O. solutions 
on the boundary of the achievable domain, since it requires a sequence of 
optimizations under the direct control of the designer and gives only 
approximate solutions. 

Results using this method have been presented in Refs. 5, 6, and 7. A 
similar method was developed by Zakian and Al-Naib (Ref. 8). Although 
there is no direct consideration of sensitivity to uncertainty, a degree of 
robustness is obtained if the final 1 values are considerably better than 
those required for a satisfactory design. Karmarkar and Karmarkar and 
Siljak (Refs. 9 and 10) proposed a direct approach to design for insensitivity 
by maximizing the margin in z space instead of in f space, but their method 
is too computationally costly for the problems considered here, though it 
only gives approximate solutions. 

8.3.2. Pareto Optimal Multiobjective Design. A natural way to scalar
ize the problern of finding a particular P.O. solution is 

min max {[J,(z)- aJ/ bJ, z E Z, j = 1, ... , m (8.9) 
0 J 
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The elements aj are reference values for .J;(z), corresponding to some fixed 
Ievel of quality for each objective; and b, are scaling constants that equalize 
the relative values of increments from ar However, gradient-based 
algorithms cannot be used for problern (8.9) because of its well-known 
nondifferentiability. Therefore, the following equivalent formulation is used, 
in which the multiple objective requirements are part of the constraint 
vector, as in Eq. (8.8): 

min rJ s.t. .f(z) ~ a + rJb, Z E Z (8.10) 
z, ') 

In problern (8.10) only the quantitative objective functions are considered, 
and .f0(z) in Eq. (8.8) is replaced by the dummy scalar, 7], which is also 
included as one of the design variables. The fixed constraints in Eq. (8.8) 
are replaced by sliding constraints that converge to a well-balanced solution 
on the boundary of the achievable domain depending on the designer's 
choice of a and b. By choosing a and b instead of], the designer can obtain 
a sample P.O. solution in each minimization (Refs. 11 and 12). This method 
was called "Incremental Utility Scaling." Several techniques for choosing 
a and b were explored in Ref. 13. A particularly useful method requires 
the choice of two sets of well-balanced objective function values, a set of 
marginally acceptable values for a1 and another set of highly desirable 
"Designer's Goal" values, avr Then b = a- a0 is used in problern (8.10). 
Formally, this method is equivalent to the Goal Attainment method 
developed independently by Gembicki (Ref. 14), but his implementation 
was quite different from ours. Figure 8.3 is a sketch showing how the 
Designer's Goal method converges to well-balanced P.O. solutions as rJ ~ 
rJb, the minimum value. Of course, the algorithm (8.10) does not guarantee 

Pareto optimal 
solutions 

Fig. 8.3. Convergence to Pareta optimal solution in objective function space using the 
Designer's Goal method, with b = a - a0 . 
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global Pareto optimality, and in very special cases does not even give local 
Pareto optimality. Gembicki showed that f(z*) is P.O. if (z*, 77*) is a 
unique solution of problern ( 8.1 0), but the difficulty of proving such unique
ness is weil known. Several solutions were checked using algorithms in 
Ref. 11 and shown to be P.O. However, uniqueness and globality were 
usually investigated only by practical devices, such as varying starting points, 
constraints, and the choice of a and b. 

Kreisseimeier and Steinhauser (Ref. 15) modified the method in Refs. 
6 and 7 by introducing a scalar penalty function to approximate the 
inequality constraints in problern (8.10). Results u•,ing this method will be 
presented. 

8.3.3. Multiobjective Stochastic-Insensitive (SI) Design. An important 
question in computer-aided design is how to evaluate the sensitivity of 
design quality to uncertainty in system parameters and how to account for 
such sensitivity in the design process. This question is particularly important 
in design of feedback control systems, since it is an accepted principle that 
one of the main purposes of feedback is to provide insensitivity to model 
uncertainty. The stochastic-insensitive (SI) method is a natural extension 
ofthe deterministic Pareto optimal multiobjective method, in which a vector 
of sensitivities is defined whose components are the probabilities that the 
objective would violate specified requirement Ievels, given a probability 
distribution for the uncertain parameters of the system (Ref. 16). 

Assurne that the designer can specify the significantly uncertain pa
rameters and that these can be assumed Gaussian. The uncertain parameters 
comprise a vector v E IR 1, and the objective functions are now given as 
f( z, y): !Rn x IR 1 ~ IR~. Then choose an acceptable set of objective values}, 
and define a design sensitivity vector whose elements are the probabilities 
of exceeding these acceptable values, 

s)z) ~prob [;;(z, y) > lJ. j = 1, ... , m (8.11) 

A Pareto-optimal insensitive design problern can then be formulated as 

min 11 s.t. s)z) 3 71, Z E Z ( 8.12) 
T],Z 

This is equivalent to minimizing the maximum sensitivity. Note that J in 
definition (8.11) should not be confused with J in Eq. (8.8). 

This statement of the problern is deceptively simple. The introduction 
of the s1 (z) as objectives in the algorithm of Eqs. (8.11) and (8.12) actually 
doubles the number of objectives that the designer must consider, since the 
nominal values of the objectives are, of course, also important in evaluating 
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the design. Their impact on the design appears in the choice of l. Referring 
to the deterministic design process defined by problern (8.1 0) and Fig. 8.3, 
suppose J were chosen along the vector ( a + 7Jb ). We must choose a feasible 
point with J; > fb1 since the designwill approximate the deterministic design 
as J approaches f'J;. In fact, if J were infeasible, the formulation (8.12) 
would breakdown completely, since maximizing the scatter (i.e., sensitivity) 
would tend to keep the probability of violation smaller ( = 0.5). But if J 
were chosen too !arge, then all the computed sensitivities would become 
very small for any design, and problern (8.12) would be practically meaning
less. Thus, there is a useful range of J values that yields insensitive designs. 
To locate this useful range, it is desirable to obtain the deterministic Pareta 
optimal design before starting the SI design process. 

Moreover, the functions f(z, y) are nonlinear in y and therefore, non
Gaussian, so the accurate calculation of their probabilities is impractical. 
However, the designed insensitivity properties may not require precise 
probability calculations, so a linear approximation was used for the devi
ation of f from the nominal value, J(z) ~ f(z, y), and a Gaussian approxi
mationwas used for the distribution of t:lf. The mean and covariance matrix 
of the Gaussian distribution are 

](z) = f(z, y), (8.13) 

Here, Cy is the covariance matrix of the uncertain parameters, and J(z) is 
the Jacobian matrix of partials of f with respect to y, evaluated at y = y. 
For certain highly nonlinear functions, modifications were introduced to 
this procedure. These will be discussed in connection with the examples. 

8.3.4. Tradeoff Method in SI Design. While an experienced designer 
might be able to choose values for J in Eq. (8.11) to yield a good compromise 
between nominal objectives and insensitivity, systematic tradeoff procedures 
are clearly desirable. Several useful tradeoff methods have been studied 
(Ref. 17), two of which will be described here. 

By varying J along the vector ( a + 7Jb) in the range J > J"b, a useful 
range of SI designs can be investigated. For convenience, the value of J is 
made a function of a scalar, 7, using 

]( 7) ~ a + TTJbb (8.14) 

A sequence of SI designs can then be obtained by choosing several values 
of i < 1 for the J value in Eqs. (8.11) and (8.12). Note that for any particular 
design, s(z*) is really a function of ]( 7), but it would make no sense to 
compare different designs in terms of probabilities of violating different J 
values, even though they are designed at different J values. Designs will be 
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compared for a range of l values by plotting their sensitivities against 7, 
using Eq. (8.14). The value of 7 used in obtaining a particular designwill 
be distinguished by the notation TnEs. Since ToEs = 1 gives approximately 
the deterministic design, and decreasing values of 1-nEs allow greater freedom 
for the SI design, such a sequence of designs represents a tradeoff between 
deterministic and SI Pareta optimal design. 

The second tradeoff method is more explicit. The designer chooses a 
value of 1-nEs corresponding to emphasis on design for insensitivity, and 
then does a sequence of SI designs with explicit constraints on the nominal 
objective values, ](z), varying the constraint values as in Eq. (8.14). This 
tradeoff algorithm has the form 

min 1) 
T),C 

s.t.prob[f(z,y)>/]~7) and ](z)=f(z,.Y)~a+f7]'bb 

(8.15) 

Here l is fixed and tradeoff solutions are obtained by varying the nominal 
objective constraints, with f < 1. These solutions must also approach the 
deterministic design when f ~ 1. Here each SI design is constrained to give 
required nominal ( expected) values for the objective functions. 

8.4. Examples, Results, and Discussion 

Several example problems in the design oflateral stability augmentation 
systems are presented. The deterministic methods are applied to a 
hypothetical fighterairplane design in a wide rangeofflight conditions with 
objective functions based on military handing qualities specifications. The 
SI methods are applied to the Shuttle at reentry flight conditions where the 
aerodynamic rudder control is marginally effective. The uncertainties in 
aerodynamic coefficients at these flight conditions have been carefully 
studied, and they were considered so significant that the Shuttle roll rate 
was constrained to 5 deg/sec. The objectives in the Shuttle example are 
based on handling qualities for !arge transports, but objectives aimed at 
avoiding control limiting are added to permit study of insensitive design at 
faster roll rates. 

The example problems are considerably simpler than realistic control 
system designs, but they illustrate the essential complexities and capabilities 
of design for multiple objectives and insensitivity to uncertain parameters. 

Example 1. SAS Designfor Ten Fighter Flight Conditions Using Varied 
Constraints on Objectives. The airplane considered in this example is a 
hypothetical variable-sweep configuration developed a number of years ago 
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in a Langley Research Center study of promising designs for supersonic 
fighters. Ten design ftight conditions are used, ranging in Mach number 
from subsonic to M = 2.5, in altitude from 10,000 ft to 60,000 ft, and in 
angle of attack from 1.7° to 15° (Refs. 5, 6, 7). Seven objective functions 
are used in each ftight condition, giving 70 in all. The objective of the study 
is to compare the best handling qualities values that can be obtained over 
all the ftight conditions by SAS of varying complexity. The algorithm used 
is that in Eq. (8.8 ), with f 0 ( z) being the sum of squares of the feedback 
gains in each SAS configuration. A sequence of constraint values, J, is 
employed to find design solutions for each SAS that are near the boundary 
of the achievable domain and well balanced in all objectives. 

Results are presented for the following four SAS configurations. Referr
ing to Eq. (8.6), in all cases Da1, is assumed to be the maximum aileron 
command, with C 1 = 1. In the simplest SAS no sideslip feedback is assumed 
( K 11 = K21 = 0), so the vector z has five components, C2 and the four 
angular rate feedbacks. In the second SAS, the same five gains are used, 
but C2 is scheduled with ftight condition using a linear expression in angle 
of attack (a), Mach number (M), and dynamic pressure (q). Letting 
v = 1, ... , 10 represent ftight condition number, the law has the form 

(8.16) 

Here z has eight components, the four feedback gains and the four 
coefficients of Eq. (8.16). The third case is the seven-gain case of Eq. (8.6) 
( with C 1 = 1 ). The fourth case is a modification of the seven-gain case with 
a Iead lag filter applied to the sideslip feedback, ß, ofthe form (1 + 7 1 s )/ (1 + 
7 2s ). Here s represents the Laplace transform variable. This introduces two 
new design variables, 7 1 and 7 2 , but the yaw-rate feedbacks are dropped 
( K12 = K22 = 0), so z still has seven components. 

The achievable handling qualities with each control system are shown 
in Table 8.1. The column headings are the handling quality objectives, and 
the first row gives the required values, which correspond to satisfactory 
handling qualities in combat (the most stringent requirements). The first 
three objectives are stability requirements, defined by the characteristic 
roots. The damping ratio of the dutch-roll oscillatory mode, ~d, should be 
!arge; the real root, AR, dominates the roll response and should be as stable 
as practicable; and the real root, As, is always small and is acceptable even 
when slightly unstable. Note that the stability requirements are very depen
dent on the physical characteristics ofthe modes. The next two requirements 
are the bankangle attained in 1 sec and 2.8 sec, which are speed of response 
objectives. The objective ßM is the peak sideslip excursion in the rolling 
maneuver, a decoupling requirement. The ßM requirement varies between 
2° and 6°, depending on the dutch-roll eigenvector. Finally, the last column 
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Table 8.1. Requirement Levels Achieved in Ten Flight Conditions with Various 
Lateral SAS Configurations 

ijßM 
Requirement (d AR As <f>(l) c/>(2.8) ßM lb deg/ft2 

Spec. Ievel :2:0.19 :S -1.0 :S0.05777 :2:90° :2:360° :S(20-60) :S 1500 
Unaugmented 0.01 -0.78 0.041 60° 240° 8.8° 7900 

5 gain 0.24 -1.5 No No 8 8 8 viols. viols. 

5 gains 0.275 No No No 8 (20 -40) No 
programmed c2 viols. viols. viols. viols. 

7 gain 0.3 -1.5 No No No (2°-4.6°) No 
viols. viols. viols. viols. 

Filtered ß 0.37 -1.5 No No No = 20 No 
viols. viols. viols. viols. 

is not a real handling qualities requirement. It was included to represent a 
Iimit on peak Iateralloads in the high dynamic pressure conditions, because 
the standard ßM Iimits seemed to permit very !arge Ioads in these conditions. 

The second row shows the worst values over the set of fiight conditions 
for the unaugmented airplane, which are all unsatisfactory except the spiral 
root. The third and fourth rows show that even the five-gain SAS can give 
satisfactory results in all but two handling qualities and the dynamic Ioad 
requirement (violations are encircled), while with programmed crossfeed 
there is only an insignificant violation of the time required to bank 360°. 
Finally, with the seven-gain and filtered-ß SAS, handling qualities substan
tially better than the requirements are obtainable. The ability to adjust seven 
parameters to satisfy such varied requirements over a wide range of fiight 
conditions shows the impressive capability of this constrained minimization 
approach in multiobjective design. The use of multiple inequality constraints 
to define a Ievel of quality, instead of minimizing some distance measure 
from a desired model, permits wide variation in the models at various fiight 
conditions, though all satisfy the inequality constraints for good handling 
qualities. Although all the controlled responses are satisfactory, the 
responses in different flight conditions with a given SAS are very different 
from each other. The sideslip responses can be opposite in sign, and the 
rise times can be quite different. Yet, all are satisfactory to the pilot, who 
does not expect identical responses in widely different ftight conditions. 
The advantage of the inequality constrarned approach is that it recognizes 
that very different response characteristics can be equally good. This 



www.manaraa.com

Design of Aircraft Control Systems 241 

approach is essential when trying to design over a wide range of flight 
conditions, accounting, as it does, for the adaptability of the pilot. 

Example 2. Pareta Optimal Multiobjective SAS Design for Five Fighter 
Flight Conditions. In this example the Pareto optimal search described by 
Eqs. (8.9) and (8.10) is applied to the same problem, except that only the 
five supersonic flight conditions and the seven-gain SAS are considered. 
Results are shown for an Incremental Utility Scaling (IUS) design in which 
aj are chosen approximately at the specification values in Table 8.1, and bj 
are the magnitudes ofthese values. In this case two quite different converged 
solutions were found. Results are also shown for the Designer's Goal 
formulation, using balanced sets of marginally tolerable values for aj and 
highly desirable values for a01 • An approximate solution for the latter case 
is also found using the Kreisselmeier-Steinhauser differentiable approxima
tion to the min-max problern (8.9), which replaces problern (8.10) by 

Z E Z (8.17) 

where p is a !arge positive nurober (Ref. 15). 
Results of these solutions are compared in Table 8.2, which shows the 

gains and the binding jj values in each flight condition. The first two cases 
are the double solution for the IUS case. Although the gains are radically 
different, the binding (i.e., worst) jj values indicate that the quality of the 
two SAS designs is surprisingly similar. Particularly noteworthy is the fact 
that the crossfeed, C2 , is of opposite sign in the two solutions, since a 
"well-coordinated" rudder input requires C2 > 0. Responses for the two 
designs are shown in Fig. 8.4. Although the rudder position for C2 < 0 is 
initially "wrong," the radically different feedback gains quickly correct its 
position, and the quality of the responses in the five flight conditions seems 
essentially equal for the two very different sets of gains. 

The third case in Table 8.2 shows that the formulation using the 
Designer's Goal method Ieads to gains that are significantly different from 
the first two, but the overall design quality, represented by the binding f 
values, is essentially equivalent to the others. The fourth case shows that 
the Kreisselmeier-Steinhauser (KS) method gives effectively the same 
solution. Our limited experience with this differentiable approximation to 
the min-max, which replaces the "hard" constraints of problern (8.10) with 
the "soft" constraint form in problern (8.17), indicates that it is a useful 
method. For our problems neither method seems definitely superior. 

These results using the Pareto optimal formulation show that there are 
various effective ways of choosing a and b in problern (8.10) that yield 
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Fig. 8.4. Comparison of fighter airplane responses in five ftight conditions, using the double-
solution Pareto optimal SAS designs in Table 8.2. 

well-balanced solutions on the boundary of achievable domain in a single 
ron. The existence of multiple solutions indicates that care should be taken 
to ensure that desirable solutions are not missed, although those found in 
the examples appeared to be similar in quality. The results in Examples 1 
and 2 indicated that there is a surprisingly wide regime of designs that are 
effectively equal in quality. 

Example 3. Multiobjective Stochastic-Insensitive (SI) Designfor Shuttle 
Lateral SAS. In the next two examples the set of objectives is expanded 
to include consideration of control limitations and insensitivity to model 
uncertainty. The example used for the SI design is the design of a lateral 
SAS for the Shuttle entry vehicle using the eight-gain SAS defined in Eq. 
(8.6). The uncertainty of Shuttle aerodynamics has been very thoroughly 
studied, and simulation studies have shown that these uncertainties could 
seriously degrade the expected response (Ref. 18). The control effectiveness 
and sideslip aerodynamic derivatives, which affect the B matrix and the 
first column of A in Eq. (8.4), as applied to Eq. (8.5), are the most significant 
uncertain parameters. These are taken as the elements of the uncertain 
parameter vector, y, which has nine components, since the elements in the 
fourth row are zero. The uncertainty in rodder effectiveness is so critical 
that yaw reaction control is used to assist the rodder at Mach numbers 
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above M = 1. As a challenging task for the SI design procedure, examples 
are shown at the higher Mach numbers, M = 1.5, 2.5, 4.0. Since the calcula
tion of the Jacobian matrix, af! ay, increases the computational costs sig
nificantly, only single flight condition designs are used as examples. The 
standard deviations of the uncertain parameters, as percentages of nominal, 
are approximately 10%-20% for sideslip derivatives, 10%-15% for aileron 
derivatives, and 20% -25% for rudder derivatives. Same of the derivatives 
are highly correlated. 

Before initiating the SI design process, a deterministic Pareta optimal 
design study was carried out at each Mach number. The objective functions 
used and the associated Designer's Goal parameters are shown in Table 
8.3. Negative signs are used for consistency with simultaneaus minimization. 
Same explanation is needed of the difference between these objectives and 
those in Table 8.1. The dutch-roll frequency, wd, was introduced as a design 
objective because it is a measure of weathercock stability, which tends to 
keep sideslip small. The bank angle at 6 sec is used as speed of response 
objective, since this !arge vehicle is not required to roll rapidly. The magni
tude of peak sideslip, ßM, is here constrained to very small values in either 
direction, because heating requirements override the more complex handling 
qualities requirements. The function ( w~/ w~) is a ratio of constants in the 
roll transfer function, which should be near unity for good response. Since 
there is a two-sided penalty for deviations from unity, minimization requires 
that both ±(w~/ w~) be used. The peak magnitudes of both control deflec
tions and ratesarealso used as objectives, since avoidance of controllimiting 
is always important, especially when the control effectiveness is known to 
be marginal. 

The unaugmented values indicate undesirable response properties at 
each Mach number. The combination of spiral and roll damping into the 
so-called lateral phugoid complex mode is an indication of very inadequate 
roll damping, and the dutch-roll damping is also inadequate. The sideslip 
peaks are far above the desired values of less than 1°, and this undesirable 
coupling effect is also seen in the +(w~/w~) values shown, which should 
be near unity. The change of sign between M = 1.5 and M = 2.5 corresponds 
to a very undesirable roll-reversal effect. This also appears in Ba..", the value 
required to achieve c/>(6) = 60°. The ]arge adverse sideslip rolls the aircraft 
opposite to the direction commanded by the pilot's input. 

The values of a1 and a0 , were chosen after an exploratory deterministic 
design study. In the case of the peak controls, the a values are at the Iimits, 
and the a0 values are 0.8 of these. The values for c/>(6) correspond toroll 
rates !arger than those allowed on the Shuttle. Of course, many difficulties 
in realistic control system design for the Shuttle are not considered in this 
study, which is an exploratory study of the potentialities of SI design. 
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The value of J used in Eqs. (8.11) and (8.12) was chosen midway 
between av and a on the ( a + TJb) line of Fig. 8.3. The probabilities in Eq. 
( 8.11) were calculated using the mean and covariance of f( z, y) correspond
ing to the linear-Gaussian assumptions of Eq. (8.13). As a check, a Monte 
Carlo routine was used to estimate the probabilities for the nonlinear 
functions. The linear-Gaussian approximation was reasonably accurate for 
all sj(z) except those corresponding to peak value violations. These prob
abilities were being calculated either using the q-norm approximation for 
the maximum value (which is discussed in a later section), or by finding 
the peak value of the nominal time history and calculating the probability 
that the off-nominal trajectories would be greater thani at the corresponding 
time. 8oth gave poor approximations to the Monte Carlo results. Therefore, 
a library routine that calculates cumulative bivariate Gaussian probabilities 
was used to calculate the joint probability of violation at the times corre
sponding to each pair of peaks on the nominal response, and using the 
worst of these for the corresponding s1(z) yielded acceptable accuracy when 
compared to Monte Carlo results. 

Monte Carlo results for deterministic and SI designs at the three Mach 
numbers showed that SI designs reduce critical sensitivities. At M = 1.5 

P, deg/ sec 

P, deg/ sec 

P, deg/ sec 

0 123456 
Time, sec 

0123456 
Time, sec 

(c) M=4.0 
Fig. 8.5. Shuttle roll-rate responses for deterministic and stochastically-insensitive SAS 

designs at three Mach numbers. Solid curves are nominal; dashed are five worst 
cases in 99-percentile Monte Carlo sample. 
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the s1 values for the deterministic design were all very small, except for 
rudder-rate, which has 15% probability of exceeding 80% of its maximum 
value. This was reduced to less than 0.1% by the SI design. Similarly, at 

M = 2.5, the worst si was changed from 30% to 5%, and at M = 4.0, from 
75% to less than 50%. Even at M = 4.0 a good nominal design was 

obtainable, but the 75% probability of rudder-rate violations verifies simu
lator results that the rudder control is quite undependable at this Mach 
number. 

Roll-rate responses for deterministic and SI designs are compared in 
Fig. 8.5, where the responses of the nominal systems are shown along with 
five off-nominal system responses at the 99th percentile at the Monte Carlo 
sample. The off-nominal responses were ranked using a rough scalar measure 

of "badness." There is a significant decrease in the scatter of the oft -nominal 
responses for the SI designs in each case. The off-nominal responses at 
M = 4.0 are unstable. These results do not include the nonlinear effects of 
control limiting, which will be shown in the next section. 

Example 4. Tradeoff Methods in SI Design. Studies of tradeoffs 

between design for insensitivity or from nominal objectives were carried 

Ga ins 

2.4 

Nominal I. 1.6 
J 

and a. 
J 

0.8 

·K12 

·K23 

-Kl3 
~~--L-~--~~ 

0.2 0.4 0.6 0.8 1.0 

toES 

Fig. 8.6. Variation of stochastically-insensitive designs with ioEs; typical gains, nominal J;, 
and (]"1• 
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out by varying] in Eq. (8.11), as described by Eq. (8.14 ), and by constraining 
Jas in Eq. (8.15). Varying J is a natural way to explore how insensitive 
designs differ from deterministic Pareta optimal, since ToEs near unity 
corresponds to nealy deterministic solutions. These tradeoff studies were 
done for the Shuttle M = 2.5 ftight condition. 

Figure 8.6 shows results of a sequence of SI designs varying J with 
7oEs. Plotted are four typical gains, three typical nominal i, and their 
standard deviations, a1. As 7nEs decreases, the gains first vary rapidly, but 
for 7oEs :s 0.4, there is relatively little change in the gains. As one would 
expect, the corresponding nominal values and a1 show a similar variation. 
There are clearly significant changes in design properties with increased 
emphasis on insensitivity. The only significant penalty in the nominal 
objectives for increasing design emphasis on insensitivity appears to be a 
decrease in the speed of response, cb(6). As shown by the examples of td 
and AR, the other nominal objectives either improve or are little affected. 
Note also that aA" increases, while the !arger negative values of ÄR keep 
the probability of violation small. 

In Fig. 8.7, the solid curves show how the Monte Carlo worst probability 
of violation (maximum s,) varies with the value of ]( 7) for four SI designs. 
For comparison, the calculated optimal curve is a fairing through the 
calculated optimal values, and the deterministic optimum shows Monte 
Carlo calculations of the warst violation probability for the deterministic 
design. Since the objective of SI design is to decrease the probability of 
getting bad values of f;, the important range for comparing sensitivities is 
at low values of 7. Although the actual (Monte Carlo) sensitivities for the 
SI designs are much !arger than those calculated, there is a !arge decrease 
in sensitivity compared to the deterministic design. However, the usefulness 
of the linear-Gaussian approximation appears to be questionable below 

w-1 
Probability 
of violation 

I 

I 

f 
f 

I 

f 
f 

f 

,' \_Calculated Ojltimal 

w-4 '-L.~'-----'----'-_.... _ __, 

0 0.2 0.4 - 0.6 0.8 1.0 
"[ 

Fig. 8.7. Variation of Monte Carlo sensi
tivity estimates with 7 for trade
off varying i-oEs. 
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Fig. 8.8. Variation of Monte Carlo 
sensitivities for tradeoff varying 
constraints on nominal objectives 
in SI design for ToEs = 0. 

lOÜ 

Probability 
of Violation 

10-2 

249 

--- i Constrained 
--- - - - Unconstrained 

Io-3 '----1.---'---'---'-----' 
0 0.2 0.4 0.6 0.8 1.0 

'f 

.;DEs = 0.4, as the curves tend to overlap at low -T. The !arge parameter errors 
at these low probabilities invalidate the linear approximation. Nevertheless, 
it is clear that the approximation can yield significant decreases in sensitivity 
compared to deterministic design. 

Figure 8.8 shows similar results for the more explicit tradeoff, using 
constraints on nominal values. The unconstrained SI design is the .;DES = 0 
case from Fig. 8.7. Generally, the results seem similar to those in Fig. 8.7. 
In Fig. 8.7, a significant improvement in sensitivity is obtained between 
.;DEs = 0.6 and .;DEs = 0.4, and in Fig. 8.8 a similar change occurs between 
constraints at f = 0.8 and f = 0.6. Although a more detailed comparison 
would be useful, it appears that both tradeoff methods give similar results. 

In Fig. 8.9 time histories of nominal and off-nominal responses similar 
to those of Fig. 8.5 are shown for tradeoff designs at .;DEs = 0, 0.4, 0.6. 
These results do not include the effects of control limiting. The results for 
.;DES = 0.4 are similar to the SI results in Fig. 8.5, and the results for 

T DES= 0.6 

p, j:'?:~ 
' 0'----'--...l....---' 

:b:::/. -~~~' 
ör, deg ~~/ 

-30 
0 2 4 6 6 

Time, sec Time, sec Time, sec 

Fig. 8.9. Roll-rate and rudder responses for tradeoff varying ToEs. Solid curves are nominal; 
dashed are 99-percentile Monte Carlo. No control Iimiting. 
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Time, sec Time, sec Time, sec 

Fig. 8.10. Effect of control limiting on responses in Fig. 8.9. 

ioEs = 0.6 are similar to the deterministic results. Figure 8.10 shows the 
same results with control limitations. The responses for ioEs = 0.6 become 
violently unstable because of the destabilizing lags caused by excessive rate 
limiting in the rudder motion. Similar results were obtained for the deter
ministic design. lt appears that SI design may be particularly useful in 
conditions where control limiting is likely to occur. 

Effects of Inaccurate Statistics on SI Design. The uncertamties in 
Shuttle aerodynamics were very thoroughly studied, but such detailed 
knowledge of the statistics of uncertain parameters is unusual. An experien
ced designer can estimate the relative uncertainty of the system parameters, 
but accurate statistics are generally unavailable. Therefore, the SI design 
for ioEs = 0.4 was repeated with a cruder estimate of y statistics. This 
statistical model assumed no correlation and rounded off the standard 
deviations for the sideslip, aileron, and rudder derivatives to 15%, 15%, 
and 20% of nominal, respectively. The resulting SI design had very similar 
properties to the design using the more accurate statistics, although the 
crude statistics predicted considerably higher sensitivities for both designs. 
The higher predictions apparently were caused by the assumed Iack of 
correlation. Using the accurate statistics, comparisons of the Monte Carlo 
cumulative distributions for 4>( 6) and 18," I are shown in Fig. 8.11 for the 
two SI solutions and for the deterministic design. There is little difference 
between rudder-rate distributions for the SI cases, and both show much 
lower probability of high rates than the deterministic design. Both also show 
the typical loss in expected response speed, 4>(6). It appears that highly 
accurate statistical models of parameter uncertainty are not needed to 
obtain the essential properties of insensitive designs. 
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Fig. 8.11. Effect of vanauon in pa
rameter statistics on stoch
astically-insensitive design. 
Monte Carlo distributions of 
cf> ( 6) and S,M for determinis
tic and two SI designs. 

8.5. Computational Methods 

1. 0 

0.6 
P( f <value) 

0.4-

251 
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o SI, TDES = 0.4, basic stats 

0 SI, f 0E5 =0.4, simplified stats 

60 80 0 
Bank angle, deg Peak rudder rate 

deg/ sec 

Some ofthe computational methods used will be discussed very briefiy, 
emphasizing those aspects that are closely related to the multiple inequality 
constraint formulation. Special difficulties are encountered with the 
objective functions which are maximum values of response time histories. 
Efficient methods of solving the linear equations (8.7) are important in 
evaluating these functions and their derivatives. 

8.5.1. Optimization Algorithms. The main objective of this research 
is to compare the properlies of solutions obtained by several multiobjective 
optimization methods. Therefore, it is important to ensure that the NLP 
algorithms converge reliably to the binding constraints corresponding to 
each method. Computational efficiency is of secondary importance. The 
accelerated projected gradient method of Kelley et al. ( Ref. 4) terminates 
with a Newton- Raphson phase based on the Lagrangian form of constrained 
minimization, in which the binding constraints are treated as equality 
constraints. Very accurate convergence to the constrained minimum is 
obtained. Approximate solutions for starting the final Newton-Raphson 
phase, including estimates of the Lagrange multipliers, are obtained from 
a sequence of unconstrained minimizations that use the Davidon-Fletcher
Powell (DFP) algorithm with the constraints in a quadratic penalty function. 
A modified version of Kelley's algorithm was used in most of the examples 
shown, in which the main modification was to replace the DFP algorithm 
by the somewhat more robust BFGS algorithm in the unconstrained 
minimizations ( Ref. 19). 
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Kreisseimeier and Steinhauser have also developed effective programs 
for design of airplane control systems by extending the methods in Refs. 6 
and 7 to the min-max form (8.9). However, instead ofusing problern (8.10) 
to circumvent the nondifferentiability difficulties, they use a differentiable 
function that approximates the max-operation as shown in problern (8.17). 
For very large values of the constant p in problern (8.17), computational 
difficulties can arise with exponent overflow. Therefore, the equivalent form 

(8.18) 

j = 1, ... , m, Z E Z 

was used, wherefj(z) ~ Lt;(z)- a1 ]/b1 andf:W(z) ~ maxJ;Cz). In problern 
(8.18) all the exponents are nonpositive, which eliminates the computational 
overflowprob lern, and it is clear that the Kreisselmeier-Steinhauser solution 
differs from the min-max by at most (In m)/ p. Values of p between 25 and 
100 gave satisfactory answers in the example problems. This method is a 
useful alternative to problern (8.10), since in most design studies precise 
solutions are not needed. However, its efficiency is considerably decreased 
if there are fixed constraints that should be accurately satisfied. 

8.5.2. Numerical Modeling Techniques. Many of the computational 
difficulties arise because gradient-based optimization requires differentiable 
objective and constraint functions. These difficulties are increased by the 
use oftime-history peaks as objective functions and by the use ofnumerical 
differentiation in the gradient and Jacobian calculations, which requires 
very accurate function calculations. Another unusual difficulty arises 
because the stability requirements are very different for each characteristic 
mode, so that a subroutine to identify the various characteristic roots during 
the design iterations is needed. For the SI designs there are two special 
computational difficulties. First, we wish to find a Gaussian form for the 
probability calculations which gives reasonable accuracy for the nonlinear 
objectives. A Monte Carlo routine is used to check the Gaussian form 
initially and to calculate the achieved sensitivities for any final design. 
Second, the Jacobian calculations required at each iteration greatly 
increased the computational burden. Using numerical derivatives, the off
nominal calculations for each uncertain parameter have the same effect as 
introducing more flight conditions. 

8.5.2.1. Time- History Maximum Magnitude Calculations. Peak values 
of a response can occur at the initial or final points in the time interval 
or at internal local peaks. The maximum magnitude may occur at one 



www.manaraa.com

Design of Aircraft Control Systems 253 

or more of these peakso The internal peak times are located accurately by 
calculating the time derivative of the response at many points and doing 
a Newton search in the vicinity ofpoints where it changes signo The response 
at each critical time is a candidate objective function and must be tracked 
during the iterationso When the min-max process forces two or more equal 
peaks to become binding maximum magnitudes in problern (8010), the 
responses at each time are treated as individual jj(z) with individual 
gradients, thus avoiding nondifferentiability caused by multiple-valued 
gradientso 

In many cases the p-norm, LP, was used as an alternative to precise 
peak calculationo This differentiable approximation to the maximum magni
tude also requires calculating the response at many equally spaced points, 
say r(tk) = rko For p any !arge even integer, the p norm of the response is 

Using p = 32 (a power of 2) the pth powers and roots could be calculated 
using squares and square rootso The p-norm was weighted to distribute the 
error of LP as an approximation to Loc 0 Experimentally observed errors 
then were und er 3% -4% 0 

Both methods require the calculation ofresponse values at many equally 
spaced sample times, so efficient techniques were developed for finding 
solutions to the linear equations (807) at these timeso Since the responses 
were calculated for constant Bap' Eqso (807) could be put into homogeneaus 
form by introducing ~ap a.s a. fifth state variable, with x5 = 0 and 
Xs(O) = Oapo Then for A = [~ n the response has the usual solution, 
x(t) = [exp (At)]x(O)o 

The Bavley-Stewart algorithm (Refo 20) was used to factor A = xvx-io 
Here D = diag (Dk), X and D are real, and the blocks Dk are as small as 
possible, subject to a limit on the ill-conditioning of X. Then exp (At) = 
X exp (Dt)X-\ and exp (Dt) = diag [exp (Dkt)]o If Dk is 1 x 1, exp (Dkt) 
is a real exponential. If Dk is 2 x 2 with complex eigenvalues, f.L ± iw, 

exp (Dkt) = e~-''[(cos wt- f.L sin wt/w)/2 + (sin wt/w)Dk] 

where / 2 is the 2 x 2 identityo If Dk has real eigenvalues, f.L ± w, the same 
formula applies with cosh and sinh replacing cos and sin, respectivelyo 

Computational difficulties may arise when equal or nearly equal eigen
values of A occur in Dk with w at or near zeroo In this case sin wt/ w is 
replaced by t(l- w2 t 2/6), and similarly for sinh wt/wo If the system SIN 
and SINH functions have small relative error near zero, these are the only 
numerical precautions neededo 
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If Dk is 3 x 3 or !arger, the matrix exponential code of Robert C. Ward 
is used (Ref. 21). This uses a Pade approximation with a prehalving, 
postsquaring range reduction. Higher time derivatives, which are needed 
in the peak search, are given by 

d'x/ dt' = [XD' exp (Dt)X-']x(O) 

Calculations of the responses and their derivatives at many sample points 
can use the special identity, exp [D(t 1 + t2 )] = exp (Dt 1) exp (Dt2 ), to 
replace many computationally costly exponentiations by multiplications. 
Calculations at approximately 100 sample points require only six or seven 
matrix exponentials, while using no more than four matrix exponential 
factors in calculating the value at any time. The Iimit of four was arbitrarily 
set to control round-off error. 

8.5.2.2. Characteristic Root Identification. Heuristic schemes were 
used for identification of the individual characteristic roots during the 
iterations so that the correct constraints could be applied to each. These 
schemes are dependent on the physical nature of the modes and on the 
related requirement Ievels. For example, the spiral mode was assumed to 
be the smallest magnitude root, so that when it combined with the roll
damping mode to give a complex root, as in the Shuttle example, the value 
of the real part was assigned to represent both the spiral and roll-damping 
roots. Similarly, four real roots were assumed to imply that the dutch-roll 
complex root was overdamped. The complex dutch-roll roots were stored 
for one iteration, and when four real roots appeared the pair closest to the 
real part were used to calculate the values of equivalent frequency and 
damping ratio. 

No generat method has been developed for identifying the roots, and 
this problern is aggravated when higher-order systems are considered. If 
the nature of the control system design permits a single stability constraint 
to apply to all modes, there is no root identification problem. lf not, the 
identification routine will tend to be very problern dependent. Further 
research is needed in this area. A possible approach is to use the correspond
ing eigenvector properties to aid in identifying the modes. 

8.5.2.3. Probability Calculations. The calculation of each element of 
C1 in Eq. (8.13) requires order of I" multiplications. Transforming the 
uncertain parameters, y, to standard normal form can reduce this to order 
of I multiplications. The symmetric, positive definite matrix C,. can always 
be factored as Cv = UUT. The program carries out this factorization to 
obtain the matrix U, which defines the desired transformation, y = _v + Uv. 
The normalized random variables, v, are uncorrelated with unit variances 
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( Cv = 11). Using the Jacobian in Eq. (8.13) calculated for these variables, 
lv(z), gives C1 (z) = J"(z)JJ(z), and only the diagonal terms, a}, are 
required. The values of ~(z) and a1 (z) permit the calculation ofthe required 
probabilities in Eqs. (8.11) and (8.12), using a standardnormal distribution 
subroutine. 

These random variables, v, are also used in the random nurober gen
erator of the Monte Carlo routine which estimates the probabilities in 
Eq. (8.11) for the nonlinear functions. Sampies ranging between 1000 and 
10,000 values of v were obtained, and y and f(z, y) were calculated. The 
fraction of the sample satisfying f/ z, y) > l provides the estimate of the 
non-Gaussian probabilities in Eq. (8.11 ). Comparison of results showed 
that there was little advantage in using samples greater than 2000, and most 
of the Monte Carlo results are for samples of 1000 or 2000. The Monte 
Carlo routine was first used to check the validity of the probabilities using 
the linear-Gaussian assumptions (8.13 ). Later it was used to estimate the 
probabilities of violation for each design solution. 

As previously mentioned, the Monte Carlo calculations showed that 
the linear-Gaussian assumptions gave reasonably good probability estimates 
for all objectives except the maximum response values. Calculation of the 
probability that a response may violate a Iimit in some time period is 
particularly difficult. Using the q norm as the function in Eq. (8.13) gave 
poor probability estimates. Using the value of the response at the time of 
the largest magnitude of the nominal response also was ineffective. Further 
study showed that smaller peaks were often highly sensitive to parameter 
variation. Therefore, the sampling and peak search routinewas used to find 
all the peaks, the set of all pairs of nominal peak times was stored, and a 
bivariate Gaussian library routine was used to calculate the joint probability 
of violation for each pair of times. Using the largest of these probabilities 
for the corresponding si(z) in Eqs. (8.11) and (8.12) gave a reasonably good 
approximation to the Monte Carlo results. 

8.6. Concluding Remarks 

The computer-aided design problern for airplane control systems is a 
paradigm for computer-aided design of a generaldass of "complex systems 
for design." Suchsystemsare characterized by ( 1) multiple design objectives, 
(2) a wide domain of operating conditions, (3) significant model uncertain
ties, and ( 4) considerable uncertainty in the desirable set of design objectives. 
Methods described in this chapter for the design of such systems are based 
on using inequality constraints on the objective functions, as opposed to 
attempting to define a scalar distance measure from some ideal dynamic 
model for all Operating conditions or some other scalar "superobjective" 
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function to minimize. This approach permits much greater design ftexibility 
by recognizing that a wide domain of very different dynamic models in 
different operating conditions can be equally satisfactory in terms of the 
inequality constraint requirements on the objective functions. This greater 
design ftexibility can be effective only in the hands of experienced designers, 
who must define the computable system model and objective functions, 
perform tradeoffs using their experience, judgement, and understanding of 
model inadequacies, and continually study ways to improve the computa
tional model and the set of design objectives. 

The following detailed conclusions are drawn from the aircraft lateral 
SAS examples. Constrained minimization algorithms with objective require
ments in the constraint vector are very effective in finding control system 
designs that satisfy multiple requirements over many ftight conditions. 
Algorithms based on a Pareto optimal approach have been developed that 
increase the efficiency of the method by converging to well-balanced, non
dominated solutions in a single computer run. The SI design yielded 
significant decreases in the sensitivity of the objective values to parameter 
uncertainty, which is a distinguishing characteristic of good feedback system 
design. Tradeoff methods in SI designpermit compromises between insensi
tivity and nominal objective values, in this example, especially the speed 
of response in roll. 

lt is interesting to compare these multiobjective, multi-ftight-condition 
CAD methods with the conventional tedious and ineffective intuitive search 
for a satisfactory control system design using simulation programs. Each 
design iteration is simulated in all ftight conditions, and the designer must 
then guess what design changes will improve the critical objectives in all 
ftight conditions. In the methods described here the computer does the 
simulations, calculates all objectives specified by the designer, and automati
cally carries out an iterative search leading to a well-balanced Pareto optimal 
design. The advantages of having the designer choose the requirements, 
while the computer does the calculations needed in the complicated iterative 
search, are obvious. Each solution educates the designer about the logical 
consequences of his choice of objectives. 

Further research is needed in several directions. The SI design method 
should be extended to include sensitivity to random disturbances, such as 
gusts and noise. Practical versions of the methods should be implemented 
in efficient, transportable, user-friendly programs. More realistic design 
examples and more sophisticated types of control systems should be studied. 
The relatively simple problern treated in these examples was chosen because 
it emphasizes certain special characteristics of control system design for 
piloted aircraft, such as handling qualities objectives and multiple ftight 
conditions. However, for modern aircraft there are a wide variety of control 
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system design problems, differing for each type of airplane and for each 
phase of ftight. The dynamic model and design objectives will be different 
foreachtype of system. For example, a problern of current interest is design 
of control systems for highly maneuverable fighter airplanes. The eighth
order coupled linear equations (8.4) should be used for this problem, and 
new studies are needed to define desirable handling qualities objectives for 
this coupled response. lt may be that a nonlinear model and nonlinear 
analysis methods are needed for such problems. Although there have been 
several interesting studies of the dynamics of nonlinear maneuvers, using 
bifurcation theory applied to nonlinear dynamic equations, no useful control 
design objectives have emerged from this research (Refs. 22-25). Finally, 
the most challenging problems in design of future aerospace control systems 
are in multidisciplinary design, and multiobjective insensitive methods seem 
to be weil suited to such problems. Currently, aerodynamic, structural, 
power plant, and fire control system designs are separate from control 
system design, though it seems clear that some sort of integrated design 
would be more efficient. However, although a set of multiple objectives can 
be developed by a multidisciplinary team of designers, new basic problems 
arise in the tradeoff and decision-making processes that have not been 
considered here. 
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Multicriteria Tross Optimization 

JUHANJ KOSKI 1 

9.1. Introduction 

The origin of structural optimization can be traced back several cen
turies (Ref. 1), but it is only during the last two decades or so, with the 
advent of modern computers, that it has evolved into a mature discipline 
in engineering. The Iiterature published in this field is extensive and it can 
be reasonably discussed here only by referring to some recently written 
articles and textbooks found in Refs. 2-4. The major part of the articles 
deal with such numerical optimization techniques in finite-dimensional 
problems as optimality criteria or mathematical programming methods, but 
considerable efforts have also been made in applying the control theory 
approach to distributed parameter structural systems. The finite element 
method is commonly used in analyzing Ioad supporting structures and there 
is usually a finite-dimensional optimization problern associated with it. In 
this chapter truss design problems, which by nature belong to this class, 
are considered. Various mainly nonlinear programming approaches have 
been developed to numerically solve scalar problems where the number of 
design variables and constraints is constantly increasing. 

Structural weight or mass has been the most widely used objective 
function in applications and usually constraints imposed on design and 
behavior variables form the feasible set. The minimum weight structure can 
often be used as a preliminary optimal design in striving toward an industrial 
product that satisfactorily meets all the conflicting requirements set for it. 
lt was not until the late 1970s that the first suggestions of applying a 
multicriteria problern formulation in structural optimization appeared in 
the Iiterature (Refs. 5-10), even though in some other research areas the 
multicriteria approach had been generally acknowledged. One reason for 
this delay might be the appropriateness of the weight in measuring the total 

1 Department of Mechanical Engineering, University of Oulu, SF-90570 Oulu, Finland. 
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cost of a load-supporting structure, especially in aeronautical and 
astronautical design but also in many civil and mechanic~l engineering 
applications. In designing complex structural systems to meet tightening 
requirements it seems, howe\ler, necessary to consider more than just the 
minimum weight structure in the design process. Additional information 
can be obtained in the neighborhood of the optimal solution by applying 
standard sensitivity analyses of nonlinear programming. A more advisable 
approach, on which different computer-aided design systems can be 
naturally based, is offered by a multicriteria problern formulation where 
several potential alternatives are inherently available to a designer. All the 
conflicting and often noncommensurable criteria are optimized simul
taneously in multicriteria (multicriterion, multiobjective, vector) optimiz
ation, which can also be viewed as a systematic sensitivity analysis of those 
design objectives that are considered especially important. Instead of one 
optimal structure a set of Pareto optima is obtained as a solution to a 
multicriteria problem. Relatively few works based on the application of 
Pareto optimal alternatives have been published in optimum structural 
design thus far. Refs. 5-24 represent only some preliminary applications in 
this field, but they clearly reflect the vast possibilities offered by the multi
criteria approach in structural engineering. 

The purpose of this chapter is to brietly present multicriteria design 
theory developed for optimizing elastic trusses. The text is based mainly 
on the author's own contributions and thus it is limited to one type of 
problern only where the material volume and some chosen nodal displace
ments of a truss are chosen as criteria. It is believed, however, that this 
chapter may include several elements common to diverse applications in 
structural optimization. The presentation is given in a self-contained form 
and it comprises three major topics: problern formulation, computation of 
the Pareto optimal set, and an interactive design method. The theory has 
been supplemented by several illustrative truss examples. 

9.2. Analysis and Scalar Optimization of Structures 

Structural engineering involves design of load-supporting structures, 
such as buildings, bridges, dams, masts, cranes, cars, aeroplanes, and 
spacecraft. In the present design codes the loading, which may be caused 
by the weight or the inertia of the structure itself as weil as by different 
environmental effects, is usually treated as a deterministic quantity. The 
object of the analysis is to determine stresses, displacements, natural 
frequencies, fatigue life, or other important physical responses in a structure 
whose material and geometrical properties are known. Depending on the 
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choice of the unknown quantities in the system equations, two basic 
approaches are used in structural analysis. Throughout this chapter the 
displacement method, where the nodal displacements are chosen as 
unknowns, is applied in analyzing trusses. The other approach, not discussed 
here, treats member forces of a truss as unknowns and is called the force 
method. 

9.2.1. Finite Element Analysis of Elastic Trusses. One of the most 
commonly used structures is a truss that consists of bar-elements connected 
by hinges to each other and by supports to the base. Bars or members 
represent the simplest structural elements that can transmit only axial forces. 
Loads usually act at the nodes of a truss and thus the axial force, denoted 
by N and called the normal force, has the same value at every cross section 
of the bar. If the stress field is assumed uniform at every cross section, then 
also the sameaxial stress state shown in Fig. 9.la exists at every point of 
the bar. The only nonzero stress component is given by 

a= N/A (9.1) 

where A is the cross-sectional area of a member. The normal stress a is 
usually limited by allowable stresses, denoted here by ä in tension (a > O) 
and by q- in compression ( a < 0), which depend on the material used and 
which can be found in the design codes. A brief derivation of the basic 
equations of the displacement method for elastic trusses is given here for 
the reader not familiar with structural analysis. 

Both geometrical and constitutive linearity are assumed and the study 
is restricted to static loading. For Iinearly elastic material and small deforma
tions the well-known expressions 

(9.2) 

are valid. Here E is the modulus of elasticity, e is the axial strain, !::.L is 
the change in member length L, and v., i = 1, 2, are the axial displacements 
of the end points of the bar according to Fig. 9.1b. From Eqs. (9.1) and 
(9.2) the relation 

N= k!::.L (9.3) 

where k = EA/ L is the stiffness coefficient of the member, is obtained. This 
results in the element stiffness equation 

(9.4) 

which is written in the local coordinate system shown m Fig. 9.1 c. The 
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coefficient matrix in this equation, coupling the member forces and displace
ments, is called the element stiffness matrix and is denoted by k1 • A truss 
usually consists of several members with different orientations, and thus a 
coordinate transformation into the global coordinate system shown in 
Fig. 9.1d is needed. If the local and the global nodal displacements of 
element i are presented by column vectors v 1 = [ v1 v2] T and U 1 = 

[ u1 u2 u3 u4 ] T, respectively, the transformation equation is 

where the coefficient matrix 

[ cos a 
B = 

I 0 
sin a 

0 

(9.5) 

0 
(9.6) 

cos a 

is called the kinematic matrix. Correspondingly, the stiffness matrix of 
element i in the global coordinate system is given by 

(9.7) 

which results in the form 

[ 

2 • I 2 • ] cos a sm a cos a 1 -cos a -sm a cos a 

E;A; sin a cos a sin2 a 1 -sin a cos a -sin2 a 
K = -- -----------------_I_-----------------

1 L; -cos2 a -sin a cos a : cos2 a sin a cos a 

-sin a cos a -sin2 a ~ sin a cos a sin2 a 
(9.8) 

Physically interpreted, an element Kh, in the stiffness matrix represents the 
force in coordinate h which corresponds to the unit displacement in coordin
ate j. Thus the overall stiffness matrix can be obtained by 

k 

K= I Kl (9.9) 
1=1 

where k is the number of elements in the truss. Consequently, the stiffness 
matrix ofthe truss corresponding to the global coordinate system is obtained 
by placing the elements of each matrix K1 into their natural places in matrix 
K and adding up the element stiffnesses located in the same place in K. By 
eliminating those rows and columns which correspond to the supported 
degrees of freedom a nonsingular symmetric stiffness matrix is constructed. 
The corresponding overall stiffness equation has the form 

p =Ku (9.10) 

where p and u denote the nodal Ioad vector and the nodal displacement 
vector, respectively. This matrix equation governs the physical behavior of 
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a truss. After the elements of the stiffness matrix have been computed for 
a certain truss, the nodal displacements corresponding to the given nodal 
Ioads can be solved numerically from this system of linear equations. In 
the case of several loading conditions both vectors in Eq. (9.10) become 
matrices, each column of which corresponds to one loading condition. 
When the nodal displacements are known the member stresses can be 
computed by using Eqs. (9.5) and (9.2). The stiffness equation is valid also 
for other structures, such as plates and shells for example, but then an 
interpolation formula must be used for the displacements between the nodes 
because exact expressions are not available. Effective numerical techniques 
for generating the stiffness matrix and solving Eq. (9.10) have been 
developed during the last two decades. The general theory of the finite 
element method is not needed in truss analysis and thus it has been excluded 
here. For further reading Ref. 25 is recommended, for example. 

A three-bar truss presented in Fig. 9.2 is used in the continuation to 
illustrate a number of properties typical of scalar and multicriteria optimiz
ation oftrusses. First the stiffness matrix corresponding to nodal coordinates 
u1 and u2 shown in Fig. 9.2b is derived. Because this presentation is directed 
towards optimization rather than analysis, it is assumed here that all three 
bars are made of the same material but have different member areas A" 
i = 1, 2, 3, which are treated as design variables. According to Eqs. (9.8) 
and (9.9) the stiffness matrix 

- >.IA + "_:rA J 4 I 8 3 

,2A 3A 4 1 +s 3 

(9.11) 

is obtained for this three-bar truss having two degrees of freedom. The 
general result that all elements of the stiffness matrix are linear functions 
of the design variables, when problems with fixed geometry and topology 
are considered, can also be seen here. Even though the preceding_presenta
tion was given for plane trusses only, spatial trusses can be treated in an 
analogaus way. 

9.2.2. Minimum Volume Design of Elastic Trosses. The material 
volume or the weight of a structure has been the most frequently used 
objective function in the extensive Iiterature of optimum structural design. 
In aeronautical and astronautical applications the weight is a natural quan
tity to be minimized, but also in civil and mechanical engineering it has 
been generally accepted as a prime design criterion for load-supporting 
structures. This choice is motivated especially in applications where the 
main part of the loading consists of inertia or gravity forces, which are 



www.manaraa.com

Multicriteria Truss Optimization 269 

LC 1 LC Z 

Q b 

F 3FIZ 

d 

Fig. 9.2. Three-bar truss example: (a) Structure and numbering of design variables; (b) nodal 

Coordinates for both loading conditions; (c) loading condition I; (d) loading condi

tion 2. Design data for the problem, given in kN and centimeters: F = 100 kN, 

ii = 14 kN/cm2 , A = 14.3 cm2 , L = 100 cm, q = -8 kN/ cm2 , ~ = 0.1 cm', E = 
2 x 104 kN/ cm2• 

proportional to the mass. Use of structural weight as the objective function 

results in minimum material cost, but it is also often regarded as an indirect 

measure oftotal manufacturing cost. In the near future when new and more 

expensive materials, such as high-strength steels for example, will come 
into common use it may be expected that this situation will be further 
emphasized. In cases where massive structures must be moved it is also 
possible to minimize running costs in this way because energy consumption 

is usually proportional to mass. As a concluding remark, it should be stressed 
that material volume represents a well-defined physical criterion, which can 
be easily expressed in mathematical form and which is invariant with respect 
to time and place. 

Consequently, a typical structural optimization problern involves 
minimization of material volume (mass, weight) subject to imposed 

inequality and equality constraints. Mathematically this scalar problern is 

formulated as 
minf(x) (9.12) 
xEfl 

where the feasible set 

n = {x E llln I g(x) ~ 0, h(x) = 0} (9.13) 
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is defined by constraint functions g: !Rn ~IR' and h: !Rn ~IR', r and s being 
the numbers of the inequality and equality constraints, respectively. In 
optimizing elastic structures under static loading, inequality constraints are 
generally used to guard against overstressing, instability, and excessive 
deformations. Moreover, in dynamic loading cases, for example, natural 
frequencies can be restricted by them. Also some geometrical design con
straints and Iimits for design variables are usually expressed in this way. 
Equality constraints represent system equations used in analyzing the struc
ture. If the displacement method is applied, these constraints are stiffness 
equations, whereas in using the force method they are compatibility 
equations. Furthermore, it is possible to link some of the design variables 
by equality constraints. lt is assumed throughout this chapter that the basic 
configuration of the structure is specified; i.e., the support conditions as 
weil as the number and the location of joints are fixed. Generally, no 
members can be added to the structure and lower Iimits ,:\., = 0 are not 
allowed for member areas, which now are the only design variables. Usually 
these assumptions are described by mentioning that the geometry and the 
topology of the structure are fixed. If the material volume of a truss is to 
be minimized in problern (9.12), then the linear expression 

k 

V= L L,A, (9.14) 
1=1 

where k is the number of members, is used as a scalar criterion f(x). 
The same three-bar truss that was treated in the analysis subsection is 

used to illustrate the problern formulation. The structure is subjected to one 
loading condition (LC1 in Fig. 9.2c) where the nodal Ioad vector is p = 

[ F F] T, corresponding to the nodal displacement vector u = [ u1 u2 ] T. The 
numerical design data are given in the figure legend where equal lower 
Iimits and equal upper Iimits are imposed for all members, by using notations 
q, ü for member stresses and ,:\., A for member areas. By substituting p, u, 
and the stiffness matrix given in (9.11 ), in the system equations (9.10) and 
by computing the member stresses from (9.5) and (9.2) as functions of the 
nodal displacements, the minimum volume problern is formulated as 

subject to 

E 
a-~-u~ü - L I 

E I I! -a- ~ - (-u + ~u ) s ~ - L41 42-V 

(9.15) 

(9.16) 
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(9.17) 

i = 1, 2, 3 (9.18) 

This stress-lirnited three-bar truss problern, where only loading condition 
1 is considered, reveals certain features typical of structural optirnization. 
When the nurnber of nodal displacements increases, it is very difficult to 
solve thern analytically frorn Eqs. (9.17). Hence the equality constraints are 
preserved and 

(9.19) 

is the vector of optirnization variables. lt includes two groups of elernents: 
rnernber areas which are the designvariables and nodal displacernents which 
are called behavior variables. It is also possible to introduce displacernent 
constraints in the form 

i = 1, 2 (9.20) 

but for reasons explained later they are not used here. Even though the 
volurne is linear in the variables A and the rnernber stresses are linear in 
the variables u., the equality constraints destroy the linearity ofthe problern. 
Thus, a nonlinear nonconvex scalar optirnization problern has resulted but 
it can be seen to possess a certain mathernatical structure which rnay be 
exploited in developing nurnerical solution procedures. If the force rnethod 
bad been applied to this sarne truss problern by using a redundant force as 
the behavior variable, sirnilar conclusions could have been drawn. 

In practical applications, the structure rnust usually carry several sets 
of Ioads, not acting sirnultaneously. Each set is called a loading condition 
and the corresponding nodal displacernents are obtained by solving the 
stiffness equation separately for every loading condition. As a consequence, 
new behavior variables appear. For exarnple, if the three-bar truss con
sidered earlier also has another loading condition (LC2 in Fig. 9.2d), new 
nodal displacernents u3 and u4 are introduced as additional optirnization 
variables in (9.19). The stress constraints in this other loading condition are 

EI I 
q- ~ L (2u3 - :zu4) ~ iJ 

(9.21) 
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and the equality constraints are 

(9.22) 

A broadened optimization problern including both these loading conditions 
(LC1 and LC2 in Fig. 9.2) consists ofthe material volume given in expression 
(9.15) as the scalar objective function, constraints (9.16) and (9.17) for 
loading condition 1, constraints (9.21) and (9.22) for loading condition 2, 
and member area constraints (9.18). There are"seven optimization variables, 
twelve stress constraints, four equality constraints, and six design variable 
constraints for the whole prob lern. It may be anticipated that if the number 
ofbars is increased, the problern easily becomes complex from the numerical 
solution point of view. 

In developing multicriteria design systems it is important to have a 
good knowledge of the existing numerical methods in scalar optimization 
of structures because they are needed in generating Pareto optima and 
trade-offs for the designer. The majority of publications deal with nonlinear 
programming and optimality criteria methods, which are also called direct 
and indirect approaches, respectively. In the latter methods an intuitively 
stated or rigorously derived optimality criterion, which the optimal structure 
must satisfy, is solved by an iterative scheme, whereas direct approaches 
usually utilize different approximation concepts and nonlinear program
ming. As a matter of fact, it has been shown lately that these two basic 
approaches are closely related even though their origin and process of 
development differ markedly. A review covering present numerical methods 
and future trends can be found, for example, in Ref. 2. 

9.3. Multicriteria Optimization of Hyperstatic Trosses 

In this section the minimum volume problern of elastic trusses, defined 
by (9.12), (9.13), and (9.14), is broadened into a multicriteria designproblern 
where some chosen nodal displacements are considered as the criteria to 
be minimized simultaneously with the material volume. The applicability 
of this vector objective function is discussed in detail and some examples 
are presented to illustrate the multicriteria approach. Emphasis is given to 
problern formulation and its application, but also certain scalarization 
techniques for generating Pareto optimal solutions are briefly discussed. 
An interactive optimum design method discussed in the next section is 
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based on a bicriteria problern formulation, which is described herein detail. 

The presentation covers both hyperstatic (statically indeterminate) and 

isostatic (statically determinate) trusses, but the computation of Pareto 

optima in the isostatic case is much easier by following the scheme given 

in Section 9.5. 

9.3.1. Multicriteria Truss problem. Trusses represent a typical light

weight structure appearing frequently in a variety of industrial applications. 

Often the spans of these structures are wide and thus unfavorable deforma

tions may occur. In cases where they might be detrimental, design codes 

usually impose restrictions ori the displacements. In high-precision instru

ments, for example, the faultless functioning of the structure can be totally 

dependent on deformations caused by mechanical or thermal effects. Also 

the Operation of a device that lies on or is fixed onto a supporting structure 

may become difficult if it becomes misaligned. In pressure vessels !arge 

deformations can cause problems in sealing. Aesthetic defects may be caused 

for similar reasons for example when a crack appears in a coating material. 

In addition, many dynamic effects can be forestalled indirectly by preventing 

!arge displacements. It is possible to add displacement constraints to the 

minimum volume problem, but then the Iimits for the displacements should 

be known beforehand. Because this is difficult it seems more advantageaus 

to treat the most critical displacements as design criteria which are minimized 

simultaneously with the material volume. This results in the vector objective 

function 
f(x) = [V ai ~2 (9.23) 

where V is the material volume of a truss given in (9.14) and a., i = 1, 

2, ... , m - 1, are some chosen nodal displacements of a structure. If the 

feasible set is defined by inequality and equality constraints according to 

(9.13) the corresponding multicriteria optimization problern has the form 

min f(x) (9.24) 
XEO 

This formulation, which has been proposed in Ref. 10 for elastic trusses, 

is also suitable for other types of structures and it is called problern Pm in 

the continuation. In scalar optimization, attention is usually paid to the 

feasible set, whereas in multicriteria problems the decision maker is mainly 

interested in the available criterion values. The image of the feasible set in 

the criterion space, called here the attainable set, is defined by 

A = {z E !Rm lz = f(x), x E !1} (9.25) 

Usually there exists no unique point that would give an optimum for all m 
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criteria simultaneously. Thus the usual optimality concept used in scalar 
optimization must be replaced by a new one, especially adapted to a 
multicriteria problem. First a partial order in criterion space IR"' is generated 
by the negative cone 

C = {z E IR"' I z, ~ 0, i = 1, 2, ... , m} 

in the following way: 

z~y~z-yE C 

Now it is possible to define a minimal vector in IR"'. 

(9.26) 

(9.27) 

Definition 9.1. z* E A is a minimal vector in Ac IR"' if and only if 

z ~ z* and z E A ==> z = z* 

The corresponding optimal vector in des.ign space IR" is introduced next. 

Definition 9.2. A vector x* is Pareto optimal for problern (9.24) if and 
only if there exists noxEnsuch thatf,(x) ~ J,(x*) for i = 1, 2, ... , m with 
jj(x) < jj(x*) for at least one j. 

Verbally this definition states that x* is Pareto optimal if there exists 
no feasible vector x that would decrease some criterion without causing a 
simultaneaus increase in at least one criterion. In scalar optimization one 
optimal solution is usually characteristic of the problem, whereas there 
generally exists a set of Pareta optima as a solution to the multicriteria 
problem. Mathematically, a vector optimization problern is regarded as 
solved as soon as the Pareto optimal set has been determined. In practical 
applications, however, it is necessary to order this set further, because 
usually only one preferred solution, called a satisfactory design in the 
following, is wanted by the designer. 

9.3.2. Computation of Pareto Optima. A module that generates Pareta 
optima for a decision maker is an essential part of every multicriteria design 
system. Usually the original problern is converted into a sequence of scalar 
optimization problems by introducing certain parameters. Undoubtedly, the 
constraint and the norm methods represent the most frequently used 
approaches in the literature. The constraint method, where one ofthe criteria 
is chosen as the scalar objective function while the others are removed into 
inequality constraints by treating the constraint Iimits as parameters, is not 
discussed here. In most truss examples considered in this chapter the 
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generation of Pareta optima is based on the scalar function 

{ 
rn }1/p 

IIWf(x)IIP= .~1 w.[f,(x)-z,]P , 

where the diagonal matrix 

W= fwi Wz 

includes the weights w, ~ 0, i = 1, 2, ... , m, and the vector 

z = [minfi(x) min/2(x) · · · minfrn(x)]T 
xcn xEfl xEf1 

275 

(9.28) 

(9.29) 

(9.30) 

contains the minimum values of the criteria in n as components. This is 
called the ideal vector in the criterion space and generally it is not attainable; 
i.e., z i A. Thus the ideal vector which is determined by solving m scalar 
optimization problems cannot be achieved by any single design. It may be 
used as a reference point from which the distance in the criterion space is 
measured by the function (9.28). By fixing the integer p and varying the 
weights w, it is possible to generate Pareta Optima for problern p rn from 
the scalar problern 

min IIWf(x)IIP (9.31) 
xEfl 

where the normalization 

2: w, = 1 (9.32) 
l=l 

can be used. One Pareta optimal solution is usually associated with each 
parameter combination in the above formula, which represents the family 
of so-called p-norm methods. As a special case also the weighting method 
is included in this family. It is obtained by setting p = 1 and z = 0 in (9.28), 
which results in the problern 

rn 
mm 2: w,f,(x). (9.33) 
xEfl 1=l 

This is the traditional optimization method in cases where severa1 criteria 
appear and it can be used to generate Pareta optima for problern Pm 
parametrically by varying weights w,. It is, however, only in convex problems 
that all Pareta optima can be guaranteed to be generated in this way. As 
is shown in Ref. 23 by a static and a dynamic truss example, a considerable 
part of the Pareta optimal solutions may be lost if the weighting method is 
applied, and it thus is not recommended in structural optimization. The 
only norm method by which the whole Pareta optimal set can always be 



www.manaraa.com

276 Juhani Koski 

obtained is associated with the value p = oo. The corresponding scalar 
problern is 

min max [wd1(x), wd2(x), ... , wmfm(x)] (9.34) 
XEH 

where again value z = 0 has been used. From this it may be concluded that 
relation 

w,f,(x*) = w;}j(x*), Vi,j (9.35) 

is usually valid at a Pareta optimum x*. For computations the min-max 
formula (9.34) may be replaced by scalar problern PY stated as 

min y (9.36) 
y,xEfl 

subject to 

w,f,(x) ~ y, i = 1, 2, ... , m 

where a new optimization variable y and additional constraints are intro
duced. lf Eqs. (9.35) hold at the optimum then all m constraints are fulfilled 
as equalities. In the following truss applications the numerical solution of 
problern (9.36) is based on the gradient projection algorithm (Ref. 21). 

Generally the criteria are noncommensurable and their numerical 
values may differ greatly. For these reasons divergent normalization pro
cedures have been proposed in the Iiterature and two of these are exploited 
in the truss examples treated in this chapter. The first formula is given by 

j;(x) =.[;(x)' 
j; min 

i=1,2, ... ,m (9.37) 

which is suitable when every criterion achieves only strictly positive values. 
Notations f, min and f. max are used for the minimum and maximum values 
of the criterion !. in n. If nondimensional criteria with equal variation 
ranges are wanted, an alternative form 

j;(x) = J.(x)- J. m1n, 

J, ma'\ - J, mtn 
i = 1, 2, ... , m (9.38) 

can be used. Then the values of each normalized criterion j; are limited to 
a closed range from zero to unity; i.e., j;(x) E [0, 1] for i = 1, 2, ... , m. 

A two-bar truss shown in Fig. 9.3a is considered to illustrate problern 
Pm and the corresponding solution sets in the case m = 2. The structure is 
subjected to a vertical for~e F at the free node and the two member areas 
are the only design variables. The material volume and the vertical displace
ment of the loaded node are the criteria to be minimized. Constraints for 
stresses and member areas are imposed suchthat allowable values are equal 
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Fig. 9.3. Two-bar truss example: (a) Structure, loading, and displacement criterion tl; (b) 
feasible set n in design space and Pareto optimal polygonalline AEC; (c) attainable 
set A in criterion space and minimal curve AEC. The broken line inside A corre
sponds to part ADE on the boundary of 0. Design data for the problem, given in 
kN and centimeters: F = 10 kN, u = 10 kN/cm 2 , A = 2 cm 2 , L = 200 cm, q = 
-10kN/cm2 , 8 = 0.1 cm 2 , E = 2 x 104 kN/cm 2 . 

for all members. In this isostatic case the stress constraints reduce into the 
lower Iimit conditions of the member areas because the normal forces do 
not depend on variables A,. Forthis bicriteria problem, where the feasible 
set is a reetangle defined by the member area Iimits, the whole problern 
statement can be represented graphically both in the design and in the 
criterion space. The feasible set f! and its image, the attainable set A, have 
been depicted in Figs. 9.3b and 9.3c, where also the Pareto optimal polygonal 
line AEC and the corresponding minimal curve are shown. Note that Pareto 
optima may be located in the interior or on the boundary of the feasible 
set. In addition, as is shown in the figure, the boundaries of A do not 
necessarily correspond to the boundaries of f!. The purpose of this introduc
tory example, which can be solved exactly by the scheme given in Section 
9.5, is to give an idea of the basic features typical of multicriteria truss 
optimization by presenting the whole design situation graphically both in 
the design and the criterion space. 

9.3.3. Three-Bar Tross under Two Loading Conditions. The minimum 
volume problern of the three-bar truss, which was discussed in detail in 
Section 9.2.2, is broadened here into a bicriteria problern where merely one 
additional criterion is introduced and the feasible set is preserved. The 
structure is subjected to the two loading conditions ( LC 1 and LC2 in 
Fig. 9.2) and the vertical displacement of the loaded node under loading 
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condition 2 is chosen as another criterion in addition to the material volume. 
Thus, the problern consists of minimizing the vector objective function 

f(x)=[V ~]T (9.39) 

where the material volume is given in (9.15) and ~ = u3 , subject to con
straints (9.16), (9.17), (9.18), (9.21), and (9.22). It is seen that one basic 
unknown of the system equations appears as a criterion if the displacement 
method is applied. As in the corresponding scalar problem, one here has 
three design variables A" i = 1, 2, 3, and four behavior variables u" i = 1, 
2, 3, 4, constituting the vector of optimization variables. 

The results are shown graphically in Fig. 9.4, where the Pareta optimal 
member areas and the corresponding minimal curve have been depicted. 
In this case the Pareto optimal solutions can be generated by means of the 
weighting method by minimizing the scalar objective function 

f(x) = wV + (1- w)Li (9.40) 

where the normalization given in (9.37) is used. Some of these points are 
shownon the minimal curve and the solution corresponding to the parameter 
value w = 0.5 also represents the norm solutions obtained by minimizing 
(9.28) with values p = 2 and oo. These three points unite in this case and 
they are denoted by zP in the figure. 

9.3.4. Eight-Bar Truss with Changing Topology. As a supplementary 
example where more designvariables and topological alternatives are invol
ved, an eight-bar truss shown in Fig. 9.5a is considered. Again equal stress 
and member area Iimits are used in the constraints for all members and 
now the structure is subjected to one loading condition only. The material 
volume and the vertical displacement of the outer loaded node are chosen 
as criteria and thus the same objective function (9.39), where the criterion 
~ shown in Fig. 9.5a for this problem, is valid. In the displacement method 
formulation of this bicriteria problem, eight design variables and six 
behavior variables appear. Pareta optima for this example have been gener
ated both by the constraint and the weighting method. Even though topologi
cal design variables are not included, the zero lower Iimits of the member 
areas result in trusses where the topology changes. The minimal curve in 
the criterion space and three Pareta optimal trusses, each having a different 
topology, are shown in Fig. 9.5b. The Pareta optimal trusses corresponding 
to the end points of the minimal curve are given in Table 9.1. 

It should be pointed out that in addition to the hyperstatic minimum 
volume structure given in the table two isostatic trusses also have the same 
volume. Usually, only an isostatic minimum volume truss is obtained in the 
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Fig, 9.4. Results of three-bar truss example: (a) Pareto optimal member areas given as 
functions of parameter w used in scalar criterion (9.40); (b) minimal curve in 
criterion space. Point zP is obtained by the norm method with values p = 1, 2 and 
co, whereas the other points shown on the curve are computed by the weighting 
method only. 
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Fig. 9.5. Eight-bar truss example: (a) Structure, loading, and displacement criterion ß; (b) 
minimal curve and three Pareta optimal trusses. The curve has been generated by 
the weighting method using scalar criterion (9.40), where parameter w is associated 
with the material volume. Design data for the problem, given in kN and centimeters: 
F = 100 kN, L = 100 cm, ä = 14 kN/cm2 , A = 30 cm 2, E = 2 x 104 kN/cm 2 , !!_ = 
-8 kN/cm2 , 1 = 0 cm2 

case of one loading condition. Another interesting result evident from the 
table shows that the minimum displacement solution is not achieved by 
setting all the member areas at their upper Iimits. Furthermore, in this 
example, the weighting formula equivalent to (9.40) is used, and some 
solutions obtained in this manner are shown on the minimal curve. 

9.3.5. Bicriteria Problem P2 • Each optimization problern should be 
formulated in an appropriate way where both the computing costs and the 
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Fig. 9.5 cont. 

Minimum Volume and Minimum Displacement Solution to Eight-Bar 
Truss Problem, Given in centimeters 

A, A• As A6 A? As V 6 

10.1 12.5 16.7 0 5.9 3.4 8,035 0.36 vmLn 

30 30 30 30 30 10 23,160 0.13 amtn 
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efforts in handling the results are kept reasonable. In multicriteria problems 
this goal can be achieved by restricting the number of the criteria to as 
small a number as possible. An efficient choice of criteria may be made by 
using engineering judgement, and their number can further be reduced on 
a purely mathematical basis by introducing certain parameters. Next, this 
idea is applied to trusses by converting problern Pm into a bicriteria prob lern. 

The existence of several competing design objectives usually gives 
reason for the multicriteria formulation. Thus, it apparently is useful to 
analyze the confiict of the criteria candidates before forming the vector 
objective function. Moreover, it seems reasonable to discuss local and global 
confiicts separately. Here, functions .h and!; are called locally confiicting 
at the point x if there exists no c > 0 such that 

v,h(x) = cvf;(x) (9.41) 

A natural measure for the degree of local confiict is the angle c/J between 
the two gradients. If c/J = rr, then complete confiict occurs and if c/J = 0 then 
the criteria are collinear with no confiict. Usually 0 < c/J < rr and the case 
c/J > rr/2 could be called a strong confiict. Correspondingly, functions .h 
and!; are here called globally confiicting in fl if the scalar problems 

min,h(x) and minf;(x) (9.42) 
xc!l xEll 

have different solutions. It has been shown by means of a simple counter 
example (Ref. 21) that material volume and nodal displacement may achieve 
their minimum at the same point. Even though the global confiict cannot 
be proven generally for these two criteria it is still possible to assess the 
degree of the global confiict by minimizing every criterion separately in fl, 
as is usually done at the beginning of the design process for normalizing 
the criteria. 

Assuming p is a constant vector and multiplying the design variable 
vector by an arbitrary constant c > 0, the equation 

1 
u;(cx) =- u;(x) 

c 
(9.43) 

is obtained for every nodal displacement of a truss from the stiffness equation 
(9.10). By using expression (9.14) for the material volume and the above 
relation, the Iimits 

I im V( cx) = 0, I im u;(cx) = oo 
c-o c-0 

(9.44) 
lim V( cx) = oo, lim u,(cx) = 0 
c-+oc c-oo 
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can be derived. These results suggest that the material volume and any 
nodal displacement usually are strongly confiicting. This expectation is 
further confirmed ifthe local confiict is considered. Since the absolute value 
of u; increases in the direction of the origin according to Eq. (9.43), the 
cone of gradient directions for this displacement is obtained as 

(9.45) 

where k is the number of the design variables A,. This set is a half space 
depending on the design point x and it contains all the possible directions 
of V'u;(x). Correspondingly, it is seen from (9.14) that the cone of the 
gradient directions for the material volume is 

Cv={dERkid,>O, i=1,2, ... ,k} (9.46) 

because the volume gradient is a constant vector including strictly positive 
member lengths as the elements. This set contains all the possible directions 
of V V(x) and it is independent of the design point x. Within the positive 
cone R+ = {x E !Rk I x, > 0 for i = 1, 2, ... , k} the relation 

(9.47) 

is valid and one may thus draw the conclusion that the material volume 
and any nodal displacement of a truss are locally confiicting criteria in R+. 

The effort toward an economic problern formulation now suggests that, 
instead of using the vector objective function (9.23), it might be advisable 
to combine all those displacements that are of special interest to the designer 
into a single criterion. A linear combination of the m - 1 chosen nodal 
displacements 8" which are normalized by (9.38) such that §, E [0, 1] for 
i = 1, 2, ... , m - 1, is used here as another criterion in addition to the 
material volume. This results in the combined displacement criterion 

m-1 

X= I A,§, (9.48) 
1=1 

which can be interpreted as a scalar measure for the fiexibility of a truss 
under applied Ioads. The vector A. = [A 1 A2 • • • Am_ 1]T, A; > 0 for 
i = 1, 2, ... , m- 1, includes the weighting coefficients as components, and 
without loss of generality, it can be normalized so that 

m-1 

I A, = 1 (9.49) 
i=l 

Now the bicriteria optimization problern for trusses, called problern P2 in 
the continuation, can be stated as 

(9.50) 
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Here, the normalization (9.38) is used for the volume whereas the non
dimensional ~. which is given in (9.48), may naturally obtain a nonzero 
minimum value ifthe displacements 8, do not achieve their rninirnum values 
in n at the same point. This formulation possesses certain desirable proper
ties compared to the problern Pm which now has the nondimensional form 

(9.51) 
xEf1 

where the normalization rule (9.38) has been applied to every criterion. 
First, it has the lowest possible dimension to still be a multicriteria problern 
with competing objectives. Second, efforts in the decision-making process 
can be reduced considerably because only one trade-off is needed at each 
Pareta optimum and only two criteria must be cornpared at a time. In 
addition, a graphic output in the criterion space becornes possible in any 
computer-aided design system. Consequently, problern P2 is weil suited to 
form a basis for an interactive design rnethod because it contains conflicting 
criteria and parameters that can be used to control the combined displace
ment criterion. 

From a designer's point of view it is interesting to know how the Pareta 
optimal set of problern P2 , denoted by rY'2 , is related to the Pareta optimal 
set of problern Pm, denoted by rJ>m. Next a basic result is derived by using 
the relation presented in Definition 9.1. Let x* E n be Pareta optimal for 
problern P2. Thus, if for X E n, the inequalities 

(9.52) 

m-1 m-1 

L A,B,(x) ~ L A,B,(x*) (9.53) 
1=1 i=l 

hold, they holdas equalities, according to the definition of Pareta optimality. 
Now, Iet XE n be chosen such that 

V(x) ~ V(x*) 

B,(x) ~ B,(x*), i = 1, 2, ... , m- 1 

From Ineqs. (9.55) it follows that Ineq. (9.53) holds, and thus 

V(x) = V(x*) 

m-1 m-1 

L A,B,(x) = L A,B,(x*) 
1=1 /-= 1 

(9.54) 

(9.55) 

(9.56) 

(9.57) 

lt was assumed in (9.48) that A, > 0 for i = 1, 2, ... , m - 1. Thus, Eq. (9.57) 
is true only if 

B,(x) = B,(x*), i = 1, 2, ... , m - 1 (9.58) 
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for if §,(x) < §i(x*) for some i, then 
m-1 m-1 

I A,§i(x) < I Ai§i(x*) (9.59) 
•=1 •=1 

Accordingly, the relations (9.54) and (9.55) imply that Eqs. (9.56) and (9.58) 
hold and thus x* is Pareto optimal for problern Pm as weil; i.e., 

(9.60) 

with any A. that has strictly positive components. 
This relation guarantees that merely minimal solutions of problern Pm 

are obtained if the bicriteria problern is applied. The reverse relation, 
however, is not generally true, but it is possible that only a subset of Pm is 
obtained if problern P2 is used to solve problern Pm parametrically. In the 
convex case the sets ofso-called proper Pareto optima ofthese two problems 
can be shown tobe equal (Ref. 21), but one should notice that often problern 
Pm may be solved completely by the bicriteria approach also in such cases 
where convexity is not assured. Thus, it seems that problern P2, which was 
formulated by using mainly physical arguments, obviously has a consider
able potential also in solving problern Pm parametrically. 

9.4. Interactive Design Method 

The complete solution of a multicriteria design problern presupposes 
that one preferred solution, called here a satisfactory design, is picked out 
from among the Pareto optimal alternatives. What seem to be especially 
suited to engineering applications are the so-called interactive approaches 
where the decision maker has the possibility to participate in the design 
process in its different stages in order to bring in his personal preference 
structure. In this section, a brief presentation of an interactive optimum 
design method based on the bicriteria formulation (9.50) is given. This 
approach has been proposed in Ref. 21, where a detailed description of the 
method and of supplementary truss design examples can be found. 

9.4.1. General Description of Method. Two different types of param
eters are treated and the object is to find values for them that correspond 
to the satisfactory solution. The first group of parameters consists of w1 and 
w2 associated with V and X, respectively, in formula (9.36) when it is 
adapted to solving problern P2• The other group comprises weights A., i = 1, 
2, ... , m - 1, in the combined displacement criterion X defined in (9.48). 
The design process consists of two separate phases, which are, movement 
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Fig. 9.6. General description of interactive design method. 

along the minimal curve associated with a certain fixed A. and the changing 
of the weights A;. These are called w and A. phases, respectively, depending 
on which parameters are treated as decision variables, and they are repeated 
successively during the design process. Usually, it is very important that 
the decision maker find a good compromise between volume and flexibility 
on the chosen A. curve, whereas the division of ftexibility into different 
displacements by changing their mutual weights A; may often be regarded 
as a kind of precision control for the function of the structure. The overall 
design procedure is presented in broad outline in Fig. 9.6 and both phases 
are described separately in the following subsections. During the design 
process w and A. phases alternate until convergence conditions are met and 
problern PY is solved repeatedly by using the updated parameter values in 
order to obtain a new design point and the trade-off associated with it. One 
advantage offered by the present approach is that the design information 
generated for the decision maker will be in a concise and manageable form. 
Another characteristic feature of the method is its ability to utilize the new 
knowledge gained during the design process about the structure of the 
minimal set. 

9.4.2. Computation of Trade-offs and Initial Values. Usually only a 
few Pareto optima of problern P2 are computed by the designer, moving 
from one minimal solution to another until a satisfactory design is achieved. 
In addition to the criterion values, trade-off information is needed to support 
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the decision making at each Pareta optimum obtained by solving the scalar 
problern (9.36). Trade-off is a concept that is concerned with the advantage 
gained in one criterion by making a concession in another criterion, and 
in this bicriterion case it is natural to define a trade-off number a at x* E (i}2 

by 

(9.61) 

where B* = B(x*). Geometrically interpreted, a(x*) is the slope of the 
minimal curve at point z* = [ V*B*f, where the notation V*= Y(x*) is 
used. The trade-off number a can easily be computed at each Pareta 
optimum x* after the Kuhn-Tucker multipliers of the scalar problern Pro 
in the case where m = 2, have been determined. By introducing parameter 
e, an equivalent constraint problern P" 

min Y(x) (9.62) 
XEÜ 

subject to ~(x) :s; e, is obtained by which the whole Pareta optimal set can 
be generated for problern P2• Now, define a function v(e) by 

v(e) = Y(x*(e)), (9.63) 

where x*(e) denotes the optimal solution to the scalar problern P,. Suppos
ing that the assumptions made in the sensitivity theorem of nonlinear 
programming (see Ref. 26, p. 236) are fulfilled, it can be applied to problern 
P, to give the result 

(9.64) 

In this case V,(·) = d ( · )/ de and p.,, which now equals -a(x*), is the 
Kuhn-Tucker multiplier associated with the displacement constraint and 
the optimal vector x*( e0 ). By considering the necessary conditions of prob
lems (9.36) and (9.62) it is possible to derive a relation between the Kuhn
Tucker multipliers for these two problems. The necessary condition for 
problern P, is given by 

(9.65) 

where V x denotes the gradient with respect to x and (!1) consists of the 
terms associated with the feasible set. Correspondingly, the necessary condi
tion for the problern Py has the form 

(9.66) 

Multiplying Eq. (9.65) by p., 1 w~> which is assumed here as strictly positive, 
and subtracting Eq. (9.66), we obtain the equation 

(9.67) 
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According to the regularity assumption (see Ref. 26, p.233) the gradients 
in Eq. (9.67) are linearly independent and thus the coefficient of each 
gradient must vanish. Solving J-L from the equation formed by setting the 
first coefficient equal to zero and combining the result with that given in 
Eq. (9.64), we obtain the relation 

a (x*) = - J-L2 w2 
J-LJ wl 

(9.68) 

This shows that the computation of the trade-off nurober at each Pareto 
optimum is quite Straightforward because J-L 1 nad J-L2 can be obtained as 
by-products in solving problern P." by means of the necessary conditions. 

The first step in applying the design method is the determination of 
the initial values for the parameters w, and A, in problern P.". Considerable 
savings in computing costs may be attained if a good starting point z0 is 
found. After the minimum values of the volume and each displacement 
criterion in n have been determined by solving the corresponding scalar 
problems, the maximum values can be computed from equations 

Vmax = max V(arg min o,(x)) 

8, max = o,(arg min V(x)) 
(9.69) 

xcn 

where i = 1, 2, ... , m - 1. In such a case where the solution vector of the 
minimization problern is not unique the one that maximizes the quantity 
to be computed is chosen. An additional requirement associated with the 
application of Eqs. (9.69) is that the values of the criteria that are greater 
than the maximum values obtained in this way should not be treated in the 
design process, simply to keep the variation range of each criterion as unity. 
On the other hand, it is very economical from a computational viewpoint 
to avoid a numerical solution of m maximization problems. By substituting 
the computed minimum and maximum values into (9.38) the non
dimensional criteria V and 8., i = 1, 2, ... , m - 1, are obtained. 

The main part of this interactive design procedure is concerned with 
choosing suitable values for w1 and w2 on a fixed A. curve. The computation 
of the initial values for these parameters is based on choosing an upper 
Iimit V' for the volume. However, this is by no means intended to be an 
absolute constraint but rather a rough estimate for the value of the volume 
that the designer would not like to exceed. After V' has been imposed, the 
parameters can be computed from equations 

0 • ' w 1 = 1- V 
(9.70) 
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The geometric idea behind these relations is to estimate the minimal curve 
by a line segment that joins the point V= 1 on the V-axis and the point 
X = 1 on the X-axis and to define a point on it by means of V'. Usually a 
minimal point where the volume has a smaller value than V' is obtained 
by using w7 and w~, but this cannot be guaranteed in every case. In Ref. 
21 a method of pairwise comparisons has been proposed to determine 
initial weights A? for the displacements. It has been applied successfully to 
several case examples, but it is excluded here because it can be regarded 
as a direct modification of the approach presented in Ref. 27. 

9.4.3. The w Phase. That part of the design process that is concerned 
with choosing parameters w1 and w2 by moving along a certain minimal 
curve is called the w phase, and the part associated with changing the 
minimal curve is called the A. phase. The displacements 8, in (9.48) represent 
the hindmost criteria in the optimization process and thus it is their values 
rather than the combined displacement criterion that attract the designer's 
main interest. Usually the displacements are not very conflicting, which 
makes it possible to consider one chosen nodal displacement ~ at a time 
instead of X. By introducing numbers ßiJ, defined by 

!!.8, 
ß,j = !!.8 

J 

(9.71) 

it is possible to present the change in X due to any change tl~ by using 
the relation 

(9.72) 

This expression can be applied successfully in the neighborhood of each 
minimal solution by computing quotients ß;1 using two points lying on the 
same A. curve close to each other. Since the numbers ß,1 are not constants 
along the A curve, it is advisable to determine them again at every new 
design point by means of the current and the preceding Pareto optimum. 
In the case where the minimal curve has just been changed as a result of 
the A. phase, numbers ßlj associated with the last design point of the 
preceding A. curve can be used. 

A procedure for the determination ofthe critical displacement 81 , which 
is used as a criterion along with the volume during the w phase, is discussed 
next. At the first Pareto optimum of every new A. curve the decision maker 
must choose whether the volume or the combined displacement criterion 
is tobe improved. In the case of improving the volume an upper Iimit !!.8; 
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should be imposed for the change of each displacement criterion, corre
sponding to a unit improvement in volume. Then the condition 

ß81 = ß8; => ß8, ~ ß8; 
(9.73) 

i=1,2, ... ,m-1, i-:;tj 

can be used to find the critical displacement. VerbaBy this condition states 
that 81 first arrives at its Iimit when the volume is decreased. Conversely, 
if the volume is to be decreased, the smallest acceptable improvement 
corresponding to a unit increase in the volume should be imposed for every 
displacement criterion. In this case the same condition, where the displace
ment changes are now negative, can be used to pick out 8, simply by 
interpreting the notations ß8; in this other way. The application of condition 
(9.73) is Straightforward as soon as the numbers ß,1 have been determined 
at the Pareta optimum considered. 

The choice of the critical displacement as weil as the choice of the 
direction of proceeding are usually made only at the first minimal point of 
each A curve, whereas the conditions for proceeding along this curve must 
be defined separately at every design point during the w phase. At such a 
Pareta optimum where the volume is to be improved the decision maker 
has to determine the greatest increase of displacement 8j, denoted here by 
max ß81 , that is acceptable in order to obtain the unit decrease in the volume. 
By normalizing and applying Eq. (9.72) the corresponding max ß~ can be 
computed and the cone 

( " I do max ß~) CoM= dER- d1 <0,-=-> -
d1 ßV 

(9.74) 

where ß V corresponds to the negative unit change of V, associated with 
the current design point x* is obtained. By considering the tangent direction 
to the minimal curve at x*, defined by 

[ 
2 dl ] d" = d E R I d 1 < 0, d

2 
= a(x*) (9.75) 

where a (x*) is the trade-off nurober at this Pareta optimum, the relation 

(9.76) 

can be used as a necessary and sufficient condition for proceeding along 
the same A curve. In order to verify that this geometric condition is satisfied, 
only a comparison of the decision maker's trade-off nurober 

* ßV 
ll'oM(x ) = -

maxßß 
(9.77) 
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and trade-off number a(x*) computed from Eq. (9.68) is needed. The 
alternative case, where the critical displacement 81 is to be improved at the 
expense of the volume, is symmetrical with the preceding condition and 
again condition (9.76) is available if only proper modifications are made 
in defining CoM and d" (Ref. 21 ). A geometrical illustrationoftbis condition 
in the criterion space is given in Fig. 9.7. 

In determining new values for parameters w1 and w2 it seems reasonable 

to use the change of the volume as a step length in proceeding along 
the >.. curve. After choosing a desirable 11 V and normalizing it, the new 

parameters can be computed from equations 

.ii+ßVja 
w~=~v~+~.ii-+--(1-+~1-/_a_)ll-=v 

V+llv 
w2 =~v~+~.ii-+--(1_+ __ 1_/_a_)ll-=v 

(9. 78) 

where V,.&, and a are the values ofthe volume, the combined displacement, 
and the trade-off at the current design point. The new parameters are needed 
only if condition (9.76) is satisfied; otherwise a possible change of vector 
>.. should be considered. 

Every subsequent w phase is similar to the first one except that in them 

the critical displacement can be chosen at the first design point of each new 

>.. curve by using numbers ß,1 associated with the last design point of the 

.A- curve 

V 

a b 

Fig. 9.7. Application of condition (9.76) in the case where the volume is tobe improved: (a) 

Condition is satisfied and proceeding along this A·curve continues; (b) condition 

is not satisfied and thus change of vector A should be considered. 
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preceding curve. As a result of the w phase a sequence of minimal points 

z",zv+ 1, •.• ,z~-'- (9.79) 

is generated on the A curve for the decision maker. In order to consider 
the convergence of the w phase the vertex of the decision-cone associated 
with minimal vector z' is removed to this point, as shown in Fig. 9.7, where 
the cone is denoted by C0M(z'). Now it is possible to choose the step length 
a V in such away that condition (9.76) implies the relation 

i = V, V + 1, ... , }.t - 1 (9.80) 

Consequently, if condition (9.76) is satisfied, the current design can be 
improved on the same A curve by choosing a small enough step length. 
Instead of one point, usually a preferred curve segment, which cannot be 
further ordered, is found in a real design problem. From Eq. (9.80) it follows 
that it is always possible to reach this curve segment by a proper choice of 
the step length. 

9.4.4. The A Phase and Application of the Design Method. Improve
ments in the mutual relations of the displacements, associated with a certain 
volume, can be obtained by changing parameters A, in criterion X. The 
object ofthe A phase is to find a new minimal curve which better corresponds 
to the preference structure ofthe designer. In order to avoid several decision
making situations during one A phase an approach based on choosing a 
desirable point in the displacement criterion space !Rm- 1 is applied. This 
point is obtained by choosing such a value o~ for each displacement criterion 
that the designer would wish to attain; it is represented by 

öd = [ot o~ o~-1f (9.80 

The vector öd must be determined at the beginning of every A phase, and 
after this choice the process continues on that hypersurface of !Rm- 1 that 
corresponds to those minimal points of problern P2 where the parameters 
w1 and w2 are fixed in problern PY instead of A. By computing the differences 

i = 1, 2, ... , m - 1 

where §'[ = B,(x*), and the arithmetic mean 

_ I;:l 1 c, 
c=---

it is possible to form the unit vector 

e=[e1 e2 

m -1 

(9.82) 

(9.83) 

(9.84) 
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where e; = (c,- c)/[Lm~-; 1 (cj- c?] 112 for i = 1, 2, ... , m- 1. This vector 
can be used to determine a new weighting vector A'+ 1 from the current A' 

by choosing 

(9.85) 

Here ß.A is the step length, which must be chosen by the decision maker, 
and e represents the direction of improvement for the vector A. If Eq. (9.85) 
is used to compute the new weights the normalization condition (9.49) is 
automatically satisfied because e1 + e2 + · · · + em- 1 = 0. Geometrically this 
procedure can be interpreted as determining that direction in A, space that 
fulfills Eq. (9.49) and is "nearest" to the vector c = [c1 c2 ••• cm_1]T. By 
solving the problern Py using the updated vector A'+ 1 and simultaneously 
keeping w1 and w2 fixed, a new Pareto optimum, which usually is closer to 
the desirable point, 1s obtained. At this new design point, the differences 
(9.82) are again computed and the same process is repeated. Generally this 
procedure is continued until the condition 

'Vi,j (9.86) 

is met for the displacement differences. Thus the distance between points 
äd and 6* in the space of the normalized displacements is minimized in 
the min-max sense during the A phase. The convergence conditions arenot 
available but most obviously it is possible in this way to modify criterion 
.i in problern P2 such that the mutual ratios of the displacement criteria 
are more favorable than before. 

The overall design procedure consists of applying the two phases in 
turn until both optimality conditions d" ~ CoM and (9.86) hold simul
taneously. The satisfactory solution has then been found and the design 
process terminates. Convergence is guaranteed for the w phase, which 
usually is the more important part of the process from the designer's point 
ofview. The overall convergence and the detailed application ofthe method 
is discussed in Ref. 21 where two case examples are included. One major 
advantage obtained by this method is that the efforts of the decision maker 
are kept very reasonable. In addition to the choice of step lengths 6. V and 
ß.A the designer need only choose a critical displacement at the beginning 
of each w phase, the decision maker's trade-off a 0M(x*) at every Pareto 
optimum in the w phase, and the vector &d at the beginning of every A 
phase. Moreover, only two criteria need be compared at a time and the 
graphical representation of each A curve is possible. These features com
bined with moderate computing costs in repeatedly determining x* and 
a(x*) during the process make the method suitable for various computer
aided design systems, where the number of displacement criteria may be 
rather !arge. 
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9.4.5. A Four-Bar Tross Design problem. As an example ofthe applica
tion of the design method, a four-bar truss under one loading condition is 
considered. This concise example primarily describes the interactive design 
procedure and more realistic problems can be found in Ref. 21. The isostatic 
nature of the truss has not been utilized here but the general approach 
discussed in the preceding sections has been applied. The structure and the 
loading as weil as the two displacement criteria are shown in Fig. 9.8, where 
the numerical design data are also given. The four member areas are chosen 
as design variables and constraints are imposed on them and the member 
stresses such that the allowable values are equal for all members. The 
material volume of the truss and the vertical displacements of the loaded 
nodes are the criteria tobe minimized. The corresponding bicriteria problern 

CD A1 = 133 

r 18, A3 = 3.77 

t I 
A2 = 1 88 

sohsfactory 
des1gn 

L L 

0 b 

d 

Fig. 9.8. Four-bar truss design example: (a) Structure, loading, and two displacement criteria; 
(b) preferred Pareto optimal truss obtained as result of design process; ( c) minimum 
volume structure; ( d) truss where both displacement criteria achieve their minimum 
value. Member areas are given in cm2 Design data for the problem, given in 

kN, and centimeters: F = 10 kN, L = 200 cm, ii = 10 kN/cm 2, Ä = 5 cm2 , E = 
2 x 104 kN/cm 2 , ~ = -10 kN/cm 2 , 1 = 0 cm 2 
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is obtained formally as 

subject to 

i=1,2,3,4 

i=1,2,3,4 

295 

(9.87) 

where A = A1i 1 + A2i 2 and the normalization (9.38) is used. The minimum 
volume and the minimum displacement trusses are shown in Figs. 9.8c and 
9.8d, respectively. The initial weights A~ = 0.86 and A~ = 0.14 are chosen 
for the displacements and parameter values w~ = 0.78 and wg = 0.22 are 
computed from Eqs. (9.70) after setting V' = 3000 cm3 • The initial design 
z0 is obtained as the solution of problern Py by using these parameter values. 
The displacement B2 , which has been chosen as critical, is improved at the 
expense of the volume during the first w phase. Two more design points 
are generated on the A 0 curve until condition (9.76) does not hold any more. 
After the choice of the desirable displacements, the A phase follows and 
only two steps are needed to meet condition (9.86) with the accuracy 
required. The comparison of the decision maker's trade-off and the com
puted a (x4 ) shows that point z4 can be regarded as the satisfactory solution. 
The relevant numerical design information of this brief process, consisting 
of one w and A phase only, is given in Table 9.2 and the satisfactory truss 
is shown in Fig. 9.8b. Moreover, the graphical illustration of the design 
process both in the criterion and in the displacement criterion space have 
been depicted in Fig. 9.9. 

Table 9.2. Design Process of Four-Bar Truss Problema 

Decision maker's 
Design Values associated with design point z' figures at point z' 
index 

A, w, V Ii, Ii, a ßn <>oM ßV ßA 

0 0.860 0.780 2819 0.617 0.243 -0.556 0.874 -0.981 100 
I 0.860 0.736 2920 0.596 0.235 -0.597 0.675 -0.607 20 
2 0.860 0.728 2940 0.592 0.233 -0.605 0.689 -0.358 0.122 
3 0.774 0.728 2931 0.602 0.224 0.018 
4 0.787 0.728 2933 0.600 0.225 

a The desirable displacements are iif = 0.6 cm and lif = 0.225 cm. All dimensional quantities 
are given in centimeters. 
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Fig. 9.9. Design process of four~bar truss: (a) Designpoints on first and last minimal curves 
in criterion space; (b) corresponding representation in displacement criterion space. 
Designpoint z3 and desirable point &", which is very near to z4 , have been omitted 
to add clarity. 
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9.5. lsostatic Trosses 

In structural mechanics it is convenient to consider separately hyper
static (statically indeterminate) and isostatic (statically determinate) struc
tures. In analyzing trusses, the latter group consists of structures where 
member forces can be determined by using static equilibrium equations of 
the nodes only whereas in the hyperstatic problems compatibility equations 
are also needed to couple the elongations of the members at each node. In 
the previous sections, where the displacement method was applied to analyze 
trusses, no distinction has been made between these two types of structure. 
If an isostatic structure is considered, there is no need for such a high
powered analysis; however, this feature of obtaining the member forces 
directly is worth utilizing in optimization. Next the isostatic multicriteria 
problern is formulated and the approach developed in Refs. 10 and 15 for 
the determination of the Pareta optimal set is briefly presented. 

9.5.1. Problem Formulation and Computation of Pareto Optima. The 
same vector objective function used earlier for hyperstatic trusses is also 
applied here. Consequently, arbitrary nodal displacements of a structure 
can be chosen as criteria in addition to its material volume. The assumptions 
concerning constitutive and geometrical linearity are preserved and again 
member areas are the only design variables. Behavior variables are not 
needed because no equality constraints appear in this isostatic case and 
thus the vector of optimization variables used in (9.24) is reduced to 

X= [Al A2 Ak]T (9.88) 

where k is the number of members. Because all member forces N, can be 
solved directly from the nodal equilibrium equations, the lower Iimits of 
the design variables are obtained immediately from the stress constraints 
in the following way: 

i=l,2, ... ,k, j=l,2, ... ,q 

a -ui = a,, for tension members (9.89) 
a 

a, == q" for compression members 

where the allowable stresses er~ are chosen for every member i, and q is 
the number of loading conditions. Local instability of the compression 
members may be prevented by applying the Euler buckling constraints in 
the expression 

er, ~ 7T 2 Eid nA,LI, i = 1, 2, ... ' k (9.90) 
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which states that the compressive stress u, in member i must be less than 
or equal to the Euler buckling stress divided by the safety factor n. On the 
right-hand side of this inequality EI, and L, are the bending rigidity and 
the length of the member i, respectively. In order to convert the constraint 
into a form that has the member areas A, as the only design variables, the 
relation I; = cA;', frequently used in the literature, is introduced here. By 
this substitution the buckling constraints (9.90) yield another lower Iimit 
for each compression member in addition to those resulting from the stress 
constraints (9.89). When the more severe of these two lower Iimits is chosen 
for every design variable subject to compression, and upper Iimits Ä, are 
imposed for the member areas, the feasible set 

n = { x 1-1-. ~ A, ~ Ä., i = 1, 2, ... , k} (9.91) 

is obtained. This region consists of a reetangular prism in the design space 
generated by the member areas. lt is further assumed, as is natural, that no 
member force is zero under every loading condition, which implies that all 
the lower Iimits of the design variables are strictly positive, i.e., .:\, > 0 for 
i = 1, 2, ... , k. Following the general formulation given earlier for hyper
static trusses the multicriteria isostatic problem, called here problern Pm, is 
now stated as 

min [V ßl 112 ßm-lf 
XE!1 

where 

k (9.92) 
V= I a,A;, a, > 0 

i=l 

k 

ß = 
1 I a:{/A., a:{ E IR, j = 1, 2, ... , m - 1 

!=l 

Both the material volume and each displacement criterion can be written 
in an explicit form in this isostatic case where member forces are not 
functions of the design variables. If displacement constraints are also 
imposed, it is advantageaus to transfer the corresponding displacements 
into a vector objective function as additional criteria. Thus, the above 
formulation is preserved without causing any significant additional effort 
in numerical computation. Displacement criteria are not convex functions 
of the member areas, but it is useful to note that problern Pm can be 
transformed into a convex one by replacing the design variables by their 
inverses; i.e., y; = 1/ A; for i = 1, 2, ... , k. Next a scheme for generating the 
Pareta optimal solutions for problern Pm is presented. 

First this multicriteria problern is converted into an equivalent strictly 
convex scalar problem. lt can be shown that vector x* = [Af A! ... At]T E 
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n is Pareto optimal for problern p m if and only ifvector y* = [ yf YI ... yt] T' 

where yt = 1/ At for i = 1, 2, ... , k, is a solution to the scalar problern 

k 

min I a)y, 
1=1 

subject to 

k 

L a{ Y; ~ ~}x*), j = 1, 2, ... , m- 1 
(9.93) 

1=1 

i = 1, 2, ... ' k 

Now the necessary and sufficient Pareto optimality conditions for problern 
Pm can be derived by applying the standard Kuhn-Tucker conditions to 
this scalar problem. The constraints are linear, which implies that the 
Kuhn-Tucker conditions are necessary without any constraint qualifications. 
From the convexity of the objective function and the feasible set it is 
concluded that these conditions are sufficient as weil. The following result 
is obtained: 

Theorem 9.1. Let x* = [Af Ar ... At]T be a feasible solution to prob
lern Pm. Then x* is a Pareto optimum if and only if there exist vectors 
~ E ~m-J, f.l E ~k' 11 E ~\ with nonnegative components, such that 

i = 1, 2, ... ' k (9.94) 

where J-t; = 0 when At < A; and 7], = 0 when At > :1 .. 

The detailed proofs of this and the following theorems can be found 
in Ref. 15. 

Problem Pm is simplest when m = 2; i.e., when there are two criteria, 
material volume and one displacement. It turns out that in this case the 
optimality conditions of Theorem 9.1 can be solved exactly. The bicriteria 
formulation, called here problern P2, is obtained directly from the general 
m-criteria problern (9.92) as 

min[V ~]T (9.95) 
XEO 

where 

k k 

V= I a;A;, a; > 0, ~= I a;/A;, CC; E ~ 
i=l i=l 

and the feasible set is defined by (9.91). Next, a theorem that gives a 
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complete solution to this bicriteria problern is presented. It shows that the 
set of all Pareto optima will be a polygonal line in the design space. This 
result will be used later to get a parametric solution to the general problern 
(9.92) where the nurober of displacement criteria is arbitrary. 

Theorem 9.2. The set of Pareto optima for problern P2 consists of a 
connected polygonallirre 11 u 12 u · · · u IN. The consecutive line segments 
In, n = 1, 2, ... , N, have the parametric equations 

A; = Ä" 

As = c;- 1 t, 
(9.96) 

where K = {1,2, ... , k}, Q = {i E Kla, ~ 0}, Q =;-6. K, N = 
min{n E NIIn+I = K\Q}and c, = a!12 a~ 112 fors E K\Q.Furthermore, Io = 
0, I 0 = K, t0 = min{c1 8.1 IJ E K\Q}, and, for n = 1, 2, ... , N, 

In = In-1 u {s E K\Un-1 u In-1) I c,Ä, = ln-1} 

In= In-1\{j E In--I\Qic1 ß.1 = ln-1} (9.97) 

tn = min {c,Ä" c,ß.} I s E K\Un u In),} EIn \Q} 

The proof, which is rather lengthy, is based on applying Theorem 9.1 
to problern P2 (Ref. 15). In Theorem 9.2, the notations N = {1, 2, 3, ... } and 
K\ Q = { i E K I i ~ Q} are used for the set of all positive integers and for 
the set difference, respectively. The index sets I, I, and K change from one 
Pareto optimal Iine segment to another, whereas the index set Q remains 
constant. After solving the Pareto optimal set of problern P2 , the correspond
ing minimal solutions can be found easily by substituting (9.96) into the 
expressions for V and ll. It is also possible to eliminate the parameter t, 
resulting in an analytic presentation of the function V(ll). 

The original problern Pm is convex in the reciprocal variables and thus 
all Pareto optima can be generated for it by applying the weighting method 
given in (9.33). This Ieads to one scalar optimization problern for each 
weight combination. In the present case, however, it is preferable to convert 
problern Pm into a parametric bicriteria problem. Considerable advantage 
is obtained in this way compared with the weighting method or any scalariz
ation technique. First, the number of parameters is reduced by one and 
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secondly, each parameter combination gives a large set of Pareto optima 
instead of only one point. In addition, the solution set of each bicriteria 
subproblern is known exactly and no approximate optimization procedure, 
possibly involving high computing costs and difficulties in convergence, 
need be applied. 

Now suppose that x* is Pareto optimal for problern Pm. If the 
parameter vector ~ .,t- 0 in Theorem 9.1, then by writing ? = I~~~1 ~r and 
Ai= ~1 C\ j = 1, 2, ... , m- 1, condition (9.94) will be transformed into 
the form 

i = 1, 2, ... ' k (9.98) 

This means that x* is Pareto optimal for problern P(A.) stated as 

(9.99) 

If ~ = 0, then x* = [.c\ 1 .c\2 ••• .c\k]T, which is Pareto optimal for problern 
P(A.) for all Ai. Thus, the necessity part of the following Iemma is proved 
and sufficiency follows immediately from Theorem 9.1. 

Lemma 9.1. A vector x* is Pareto optimal for problern Pm if and only 
if there exist nonnegative parameters A1 ,j = 1, 2, ... , m -1, I)~~ 1 Ai = 1, 
such that x* is Pareto optimal for the bicriteria problern P(A.). 

By combining Theorem 9.2 and the preceding Iemma the following 
result, which characterizes the whole Pareto optimal set of problern Pm, is 
obtained. 

Theorem 9.3. Let r!P be the set of Pareto optima for problern Pm and 
r!P(A.) be the Pareto optimal polygonalline for problern P(A.), where 

m-1 

Am-1]T, Aj ~ 0, j = 1, 2, ... ' m- 1, L Al= 1. 
]~1 

Then 

r!P = u r!P(A.) (9.100) 
X 

Thus, the Pareto optimal set of problern Pm is composed of polygonal 
lines, each starting from point [~ 1 ~2 • • • ~dT. 
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From the results given in the preceding theorems a numerical method 
for generating Pareto optima for problern Pm may be constructed. First 
the original problern is converted into a bicriteria problern by choosing a 
parameter vector A. that includes the weighting parameters for the displace
ment criteria as components. Theorem 9.2 can then be applied to compute 
the corresponding Pareto optimal polygonal line in the design space. The 
scheme uses no approximate optimization technique and thus any accuracy 
wanted for the results may be achieved. The free parameter t is used for 
convenience in order to attain a clear representation form for the results 
and to enable easy movement along the polygonal line in the later stage of 
the design process where a compromise solution between the two competing 
objectives V and 11 is searched for. 

According to Theorem 9.3 the whole Pareto optimal set of problern Pm 
can be generated as a union of polygonal lines, each corresponding to one 
bicriteria problem, by varying weights A, in problern P(A.). The present 
method has the capacity for generating Pareto optima at a relatively high 
speed because each parameter combination gives an entire polygonal line. 
Moreover, the method can easily be coded as a computerprogram capable 
of obtaining any Pareto optimal polygonal line by a finite number of 
calculating steps without computational difficulties even in !arge problems. 

From a general viewpoint, this method can be regarded only as a part 
of a !arger multicriteria design system furnishing the designer with a pro
cedure for finding the best practicable structure. As was pointed out in 
Section 9.4, it is advantageaus to apply an interactive design method where 
only a finite subset of Pareto optima is considered du ring the design process. 
The present method appears to be a particularly suitable basis for such an 
approach because it generates a !arge number of Pareto optima and highly 
accurate trade-off information for the designer very economically. In addi
tion, the scheme is also usable in testing the accuracy and convergence of 
more general numerical techniques required in computing Pareto optima 
for hyperstatic trusses. 

9.5.2. Pareto Optima of Bicriteria Four-Bar Tross Problem. A four-bar 
truss shown in Fig. 9.1 Oa is considered to illustrate the application of 
Theorem 9.2. The structure is subjected to one loading condition and the 
vertical displacement of the outer loaded node is chosen as criterion 11 in 
problern P2 • Stress and member area constraints are imposed in this example 
whereas buckling constraints are excluded. The lower Iimits for the member 
areas can be computed directly from the stress constraints because no other 
lower Iimits have been imposed. The design data are given in the figure 
legend. After computation of the member forces the following bicriteria 
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Fig. 9.10. Isostatic four-bar truss example: (a) Structure, loading, and displacement criterion 
a; (b) feasible set !l in reduced design space and Pareto optimal polygonal line 
1234. Member area A3 = ./2F I u at all Pareto optima. Allowable stresses are u in 
tension and -u in compression. Only upper Iimits A = 3F/u have been imposed 
for all member areas. 

problern is obtained: 

subject to 

Flu ~ A 1 ~ 3Fiu 

J2Fiu ~ A2 ~ 3Fiu 

J2Fiu ~ A3 ~ 3Fiu 

F I (T ~ A4 ~ 3 F I (T 

(9.101) 

Here, the notation u = u = -q is used for convenience. For this problern 
the Pareto optimal polygonal line can be generated by using the scheme 
given in Eqs. (9.96) and (9.97). In this case set Q = {3} because a 3 < 0 and 
thus the design variable A 3 is at its lower Iimit at every Pareto optimum. 
Three line segments are obtained in this case and they are given next as 
functions of the parameter t. 
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Line segment 1-2 lies on that edge of 0 where / 1 = 4> and 11 = {1, 2, 3}. 
It is given by 

A 1 =F/a-, 
A2 = Y1F/ a-, 

A3 =v1F/a-, 
A4 = v1t, 

(9.102) 

Line segment 2-3, which is located suchthat / 2 = 4> and 12 = {3}, is expressed 
as 

A 3 =v1F/a-, 
A4 = v1t 

F 3v1 F 
-~t~--
(j 2 (j 

(9.103) 

Line segment 3-4 lies on that edge of 0 where / 3 = {2, 4} and 13 = {3}. It 
is given by 

A 1 =t, A3 =v1F/a-, 
A2 =3F/a-, A4 =3F/a-, 

3v'2 F F 
---~t~3-

2 (j (j 
(9.104) 

These parametric equations represent the Pareta optimal set for problern 
(9.101). This polygonal line, starting from the minimum volume solution 
and ending at the point where Ä achieves its minimum value, has been 
depicted in Fig. 9.10b. Here only one bicriteria problern has been solved, 
whereas in Ref. 15 problems with three criteria and two loading conditions 
have been considered. Their solution also presupposes the utilization of 
Theorem 9.3, which is needed if there is more than one displacement 
criterion, and they illustrate cases where the Pareta optima are located on 
the edges, on the faces, and in the interior of the feasible set. 

9.6. Couclusion 

A unified theory for the multicriteria optimization of elastic trusses, 
covering problern formulation, computation of Pareta optima, and an inter
active design method, has been presented in this chapter. Only one type of 
problern where the material volume and some nodal displacements are 
chosen as the criteria to be minimized has been discussed. The presentation 
has been directed mainly to certain theoretical aspects of multicriteria truss 
design, but the results can be applied also to various real-life problems. 
The theory has been illustrated by several examples, which represent minor 
problems from the optimization point of view, yet offer a natural starting 
point for developing methods for large-scale truss problems. 

Obviously there are many possibilities to broaden the present problern 
formulation. Several new criteria, especially associated with economic con-
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siderations and the dynamic behavior of trusses, could be introduced, and 
the multicriteria approach could be applied to plastic design as weil. Even 
if the present criteria are preserved it is still possible to bring in additional 
design variables. By choosing nodal Coordinates and member areas as design 
variables a shape optimization problern is obtained. An interesting broaden
ing possibility lies in the application of topological design variables, which 
allows the addition and removal of truss members. Combinatorial problems 
associated with changing topology are acknowledged in the scalar optimiz
ation of trusses, but to date they have not been discussed in multicriteria 
problems. However, it seems necessary to consider this question as weil 
because the choice of the topology of a truss has a profound influence on 
the criterion values. The attainable set may consist of disjoint regions in 
the criterion space, each of them consisting of one topological alternative 
where member areas have been varied. In addition to the problems involved 
with finding an optimal topology, which appear in other types of structures 
as weil as trusses, formulations where only a discrete set of member areas 
is available also arise from practical design requirements. 

The bicriteria problern considered here represents one possibility of 
parametrizing the multicriteria truss problern and it forms potential basis 
also for cases where the number of displacement criteria is !arge. On the 
other band, other parametrization alternatives, such as the norm and the 
constraint methods for example, exist as weil. The choice of an advantageaus 
parametrization is of great importance because the whole decision-making 
process depends on it. These parameters should be chosen such that trade
offs and other relevant design information are obtained with adequate 
accuracy while keeping the computation cost reasonable. Moreover, the 
parametrized problern should reach as !arge a part of the Pareto optimal 
set of the original problern as possible. 

The finite element method is commonly used to analyze load-supporting 
structures with different geometrical and material properties both in linear 
and nonlinear cases. General purpose analysis programs, some of which 
are supplemented by weight minimization routines, have been developed 
during the last two decades, and today they are available to most design 
engineers. The general tendency in the near future obviously is to combine 
analysis, optimization, and decision modules into one entity called a com
puter-aided design system. Multicriteria optimization may be viewed as 
forming an essential part of this integrated system. Problems may arise in 
computing !arge numbers of Pareto optima and trade-offs or in representa
tion and treatment of the results, but compared with scalar optimization 
the multicriteria approach is extremely flexible since it naturally offers 
several design alternatives to the designer. 
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Multicriteria Optimization Techniques 
for Highly Aceurate Focusing Systems 

HANS A. ESCHENAUER1 

10.1. Introduction 

The following considerations show the necessity ofintroducing optimiz
ation procedures into the practical construction phase: 

1. Increasing the quality and quantity of products and plants and 
reducing the costs and thereby securing competition at the same time. 

2. Fulfilling the permanently increasing specification demands as weil 
as considering reliability and security proofs, observing severe pollu
tion regulations, and saving energy and raw materials. 

3. Introducing inevitable rationalization measures in development and 
design offices (CAD, CAE) in order to save moretime for creative 
working of the stafi. 

The optimal Iayout of constructions for multiple objectives or criteria 
as demanded in a multitude of applications will require more and more 
attention in the future. Such an optimization problern for multiple objectives 
is also called vector or polyoptimization ( multiobjective or multicriteria optimiz
ation ). With reference to V. Pareto (1848-1923 ), the French-ltalian econo
mist and sociologist who established an optimality concept in the field of 
economics based on a multitude of objectives, i.e., on the permanent conftict 
of interests and antagonisms in sociallife, it is also called Pareta optimization 
(Ref. 1 ). 

The application of vector optimization in problems of structural 
mechanics or technology in general took quite a long time. lt was W. Stad! er 
(Refs. 2, 3) who, in the 1970s, for the first time referred to scientific 
application of Pareto' s optimality concept, and who published several papers, 
especially on natural shapes. From around 1980 onward, vector optimization 

1 Research Labaratory for Applied Structural Optimization, Institute of Mechanics and Control 
Engineering, University of Siegen, D-5900 Siegen, Federal Republic of Germany. 
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has been more and more integrated into problems of optimal design in the 
works of a number of scientists (Refs. 4-7), among them publications and 
dissertations from our Institute (Ref. 8). 

Another objective of theoretical investigations is to establish highly 
efficient optimization programs by means of algorithms from mathematical 
programming, and to integrate them into the process of component construc
tion and design. This requires modification or development of various 
optimization algorithms (e.g., Refs. 9, 10). Furthermore, various structural 
analysis programs ( e.g., Refs. 11, 12) are to be integrated into the optimiza
tion procedures. 

Components of giant antenna structures were the first parts of highly 
accurate focusing systems that were tested according to their optimization 
procedures. 

10.2 Mathematical Fundamentals 

10.2.1. Definitions and Notation. The objective of structural optimiz
ation is to select the values of the designvariables X; (i = 1, ... , n) under 
consideration ofvarious constraints in such a way that an objective function 
f = f(x) attains an extreme value. This can be expressed in the abbreviated 
form: 

min {f(x): h(x) = 0, g(x) -s 0} 
XE!Jl 11 

(1 0.1) 

with IR the set of real numbers, f an objective function, x E IR" a vector of 
n design variables, g a vector of p inequality constraints, h a vector of q 
equality constraints ( e.g., system equations for the determination of stresses 
and deformations), and X:= {x E IR": h(x) = 0, g(x) -s 0} the "feasible" 
domain where -s has to be interpreted for each individual component. 

An additional problern in structural optimization is that the objective 
function and the constraints are commonly nonlinear functions ofthe design 
variable vector x E IR" where the continuity of the functionals as weil as of 
their derivatives is assumed (Fig. 10.1). 

In problems with multiple objectives one deals with a design variable 
vector x fulfilling all constraints and rendering the m components of the 
objective function vector as small as possible. A modification of problern 
(10.1) yields the vector optimization problern (VOP): 

min {f(x): h(x) = 0, g(x) -s 0} 
XEIR'1 

(10.2) 

A difficulty with vector optimization problems is the determination of 
appropriate solutions considering the multiple objectives in a given way. A 
characteristic for such optimization problems with multiple objective 
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Fig. 1 0.1. Definitions of structural 
optimization. 
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functions is the appearance of an objective confiict; i.e., none ofthe feasible 
solutions allow the simultaneaus optimal satisfaction of all objectives, or 
the individual solutions of each single objective function differ. Con
sequently, the subject of vector optimization concerns statements for confiicting 
objectives. Before treating vector optimization problems, some relevant 
definitions will be considered. 

The subset X c !Rn will be given as the domain of definition. U,(x*) 
describes the E neighborhood of the point x*; i.e., the number of all those 
points x whose distance from x* is smaller than E > 0. The distance is given 
by the Euclidean metric. 

Definition 10.1. Global and relative minima. 
1. A point x E X is a global minimum if and only if 

f(x*) :;;:; f(x) Vx E X. (10.3a) 

ii. A point x* E X is called a local minimum point of f on X, if and 
only if 

f(x*) ;;=;j(x) Vx EX n U,(x*) (10.3b) 

The value f* = f(x*) is accordingly called a local (relative) minimum. 

Theorem 10.1. Conditions for unconstrained minimum problems. 

Subject to suitable differentiability assumptions one has the 
i. Necessary Condition: 

11. Sufficient Condition: If the Hessian matrix 

( elf ) H* := H(x*) = --
ax, axj ,.. 

(10.4a) 

(10.4b) 
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is positive definite, then f has a local minimum at x*. 
For the determination of optimal conditions, one now introduces the 

Lagrangian (Ref. 13): 

q p 

L(x, a, ß) = f(x) + I a,h,(x) + I ßjg1 (x) (10.5) 
I= 1 ;=I 

where a" ß1 denote Lagrange multipliers. 

Theorem 10.2. Conditions for constrained minimum problems. 

i. Necessary conditions for a local minimum. The Kuhn-Tucker condi
tions are applied to test local optimality at a point x ( Ref. 10): 

and 

q p 

V L(x*) = Vf(x*) + I a7Vh,(x*) + I ßJVg1 (x*) = 0 
·~1 ;~1 

h,(x*) = 0, 

g1 (x*) -s 0, 

ßjg,(x*) = 0, 

i=1, ... ,q 

j = 1, ... ,p 

ßi ~ 0 

(10.6) 

ii. Sufficient conditions. For convex problems the Kuhn-Tucker condi
tions arealso sufficient (e.g. see Ref. 13). 

Figure 10.2 shows a geometric interpretation in the presence of three 
inequality constraints. According to the constraints (10.6), the points A and 
B in Fig. 10.2 satisfy the following: 

1. (10.7a) 

The gradient does not lie in the subspace (ßf < 0) generated by the gradients 
of the constraint functions; x is not a minimum point because the function 
value can be reduced within the feasible domain. 

2. (10.7b) 

The considered point x is a local optimum because there is no direction 
within the feasible domain in which the function value can be reduced. 

Definition 10.2. Convexity. 
1. A subset X of IR" is convex if and only if 

[t.tx 1 + (1- t.t)x2] EX (1 0.8a) 

for each x1 , x2 E X and for each real number 0 ~ f.L ~ 1. 
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x, 

Fig. 1 0.2. Geometrie interpretation of the Kuhn-Tucker conditions under consideration of 
three inequality constraints. 

11. A real-valued function f on the convex subset X is convex on X if 

(10.8b) 

for each x 1 , x2 E X and for each 0 ~ p.. ~ 1. 
iii. A vector optimization problern (VOP) on IR" is convex if and only 

if (a) the components of the vector of the objective functions f are convex, 
(b) the components of the vector of the inequality constraints g are convex, 
and (c) the components of the vector of the equality constraints h are 
affine-linear functions of x. 

At this point, it should be mentioned again that in structural optimiza
tion both convexity attributes and the existence of local minima are hard 
to determine owing to the nonlinearity of the objective functions and/ or 
constraints. So, depending on the respective problem, single objective func
tions may possess a crest, ridge, saddle, or hump structure when presented 
in a two-dimensional design space (see Fig. 10.3). 

Definition 10.3. Functional-efficiency or Pareto optimality (Refs. 8, 14, 
15). A vector x* E Xis functional-effi.cient or Pareta optimal for the problern 
(10.2), if and only if there is no vector x E X with the characteristics 

.J;(x) ~ .J;(x*) forall iE{1, ... ,m} 

and (10.9) 

.J;(x) < .J;(x*) for at least one i E {1, ... , m) 
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Xz 

Fig. 10.3. Possible structures of search domains: (a) Crest structure; (b) ridge structure; (c) 
saddle structure; (d) hump structure. 

For all non-Pareto-optimal vectors, the value of at least one objective 
function!; can be reduced without increasing the functional values of the 
other components. Figure 10.4 shows a mapping of the two-dimensional 
design space X into the objective function space or the criterion space Y 
where the Pareto-optimal solutions lie on the curved section AB. 

Solutions of nonlinear vector optimization problems can be found in 
different ways. By defining so-called substitute problems, these are normally 
reduced to scalar optimization problems. One may thus select a compromise 
solution x from the complete solution set X*, the set of all x* as in Definition 
10.5. 

Definition 10.6. Substitute problern and preference function. The 
problern 

min p[f(x)] 
xEX 

(lO.lOa) 
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Criterion SRace 

Fig. I 0.4. Mapping of a feasible design space into the criterion space. 

is a substitute problern if there exists x E X*, such that 

p[f(x)] = min p[f(x)] 
xcX 

(10.10b) 

The function p is called a preferencefunction or a substitute objective function 
or a criterion of control effectiveness ( the last term is mainly used in control 
engineering) (Refs. 4, 16). 

It is obviously important to prove that the solutions x of all substitute 
problems are Pareto optimal or functional-efficient with respect to X, and 
the set of objective functions j 1 , ••• , fm; i.e., that a point y = f(x) actually 
lies on the efficient boundary ay* (Refs. 2, 15). 

10.2.2. Strategies for Finding Pareto Optimal Solutions. A number of 
publications have dealt with various methods for transforming vector 
optimization problems into substitute problems (Refs. 15-17). In the follow
ing, these transformation rules will be called "strategy" when referring to 
the optimization procedure. Since the problern dependence of the various 
methods may be highly relevant, it was one of the objectives of our research 
activities to test their efficiency and thus their preference behavior on typical 
structures (Ref. 8). The methods used are described below. 

10.2.2.1. Method of Objective Weighting. Objective weighting is 
obviously one of the mostrelevant substitute models for vector optimization 
problems. It permits a preference formulation that is independent of the 
individual minima; it is also guaranteed that all points willlie on the efficient 
boundary for convex problems. The preference function here is determined 
by the sum total of the single objective functions j 1 , ••• .fm tagether with 



www.manaraa.com

316 Hans A. Eschenauer 

the corresponding weighting factors w1 , ••• , wm: 

m 

p[f(x)] := l: [wj.J;(x)] = wTf, XE IR" (10.11) 
j~1 

where 

In economics this so-called benefit-model has been in use for quite some 
time (Refs. 18, 19). Objective weighting presents a scalarization ofthe vector 
problem. Figure 10.5 shows the objective weighting of three objective 
functions for the one-dimensional case. 

10.2.2.2. Method of Distance Functions. The frequently applied dist
ance functions also Iead to a scalarization ofthe vector problem. If a decision 
maker gives a so-called demand-level vector y = (j\, ... , Ym) T with the 
objective function value tobe achieved in the best possible way, correspond
ing in structural optimization to a set of assumed specification values or 
demands for the single objective functions, the respective substituteproblern 
IS 

[ 
m ] 1/ r 

p[f(x)] := 1~ 1 I.J;(x)- yJ , 1 ~ r < oo, XE IR" (10.12) 

where the variation of r meets various interpretations of the "distance" 
between the demand Ievel y and the functional-efficient solution. In any 
case, the selection of an appropriate distance function is designed to achieve 
the components of the vector y in the best possible way. 

The following distance functions are most frequently applied: 

m 

r = 1: p[f(x)] = l: IJJ(x)- Y1 ! 

r = 2: p[f(x)] = L~1 (.J;(x)- _yy] 112
, 

r ~ oo: p[f(x)] = max !.J;(x)- .Y1 !, 
J=l,m 

(10.13a) 

Euclidean metric (1 0.13b) 

Chebyshev metric (10.13c) 

The choice of a demand Ievel may cause problems. Therefore, Fig. 10.6 
qualitatively gives the solutions ofthe substituteproblern for various demand 
Ievels. It shows that the choice of y1 yields a solution i of the substitute 
problern whose mapping y1 = f(i.) E a Y* is efficient concerning Y. The 
choice of y2 , however, yields a h E ay* not lying on the efficient boundary, 
and with the choice of the inner point y3 , the respective solution y3 is not 
an efficient point of the boundary of Y. 
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Fig. 10.5. Preference function ofthe objective 
weighting in the one-dimensional 
case. 

p .f,(x) 

Fig. 10.6. Solution of the substitute problern for 
various demand Ievels. 
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The use of distance functions is subject to the following disadvantages 
(Ref. 15): 

1. The selection of "wrong" demand Ievels y will Iead to nonefficient 
solutions (Fig. 10.6). 

2. The selection of "correct" or "valid" demand Ievels y requires 
knowledge about the individual minima i of the m objective functions 
J;(x), (j = 1, ... , m), which is not easy to achieve with nonconvex problems. 

The relation between distance function and objective weighting should 
be pointed out here (Ref. 20): 

1. The goal-program by Charnes and Cooper (Ref. 21) includes the 
special distance function for r = 1. 

2. Fandei (Ref. 19) has introduced signed differences 11jj(x), j = 
1, ... , m instead of the absolute differences in his model. 

3. Weighting factors for the differences 11jj(x) are introduced into 
Fandel's model. 

4. A special selection of y = 0 is made without violating the efficiency 
condition. 

Figure 10.7 shows the formulation of a distance function for r = 2 
with three objective functions, and a single design variable in the range 
X 1 ~X~ X2. 
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p, f, (x) 

~p 
I 

Fig. 10.7. Preference function of the dis-
tance function for r = 2 in the 

X one-dimensional case. 

10.2.2.3. Method of Constraint Griented Transformation (Trade-off 
Method). Retransformation of the vector optimization problern into a 
scalar substitute problern may also be achieved by minimizing only one 
objective function with all others bounded from above (Ref. 22): 

p[f(x)] = f,(x), XE IR" (10.14) 

with 

f,(x) ~ -~' j = 2, ... , m 

Thus, f 1 is called the main objective, and f 2 , ••• Jm are called secondary 
objectives. The given problern can be interpreted in such a way that when 
minimizing / 1 , the other components have to achieve at least the values 
ji21, .•• , Yml· The dependence of the solution on the selection of these 
constraint Ievels for the two-dimensional case is shown in Fig. 10.8. The 
main objective function f 1 should be one for which no a priori estimation 
of an upper Iimit ji1 is available. 

I =1 

f1 m1n 

Fig. 10.8. Solution of a constraint
oriented Iransformation 
depending on the con-

f, straint Ievel. 
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If the constraint Ievels are to be achieved accurately, and if other 

constraints arenot considered, the problern corresponds to the minimization 

of the respective Lagrange function 

m 

L(x, a) := / 1(x) + I aJjj(x)- yj] (10.15) 
j~2 

which in this case is used as a preference function. The necessary optimality 
criteria corresponding to the Kuhn-Tucker conditions without inequality 
constraints (10.6) are 

aL = aft + I aat; ~0 
dX; dX; 1 ~2 1 dX; ' 

i = 1, ... , n (10.16a) 

aL ! 
-;---- = ./j(x) - Y1 =0, 
uaj 

j = 2, ... , m (10.16b) 

They are the basis for calculating the optimal values for x 1 , ••• , Xn and 
those of the adequate Lagrange multipliers a 2 , ••• , am. The introduction 
of the abbreviations 

(10.17a) 

and 

(10.17b) 

in equation (10.15) yields the following formula: 

m m 

L(x, a) = fdx) + I aJj(x)- I a1 jij 
j~2 ]~2 

(10.18) 

The expression (10.18) thus corresponds to the substituteproblern with 
objective weighting if one disregards the standardization of the weighting 
factors and the additive parameter C, irrelevant to the solution of the 
prob lern. 

10.2.2.4. Method of Min-Max Formulation. Besides the preference 
functions described above, the min-max formulation plays a very important 
roJe for solving substitute problems. lt is based on the minimization of 

relative deviations of the single objective functions from the respective 
individual minimum (Refs. 22, 23). 

For the interpretation of a min-max formulation we consider the three 
given objective functions with domain of definition x1 ~ x ~ x2 (Fig. 10.9). 
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Fig. 10.9. Preference function of a min-max 
formulation in the' one-dimensional 
case. 

Accordingly, the min-max Optimum can be described as follows. If the 
extremaJ; are established separately for each objective function (criterion), 
the desired solution is the variable x with the smallest value of the relative 
deviations of all objective functions. Thus, the scalar substitute problern 
according to min-max formulation can be defined as follows: 

p[f(x)] := max [z,(x)], 
J=l.m 

XE !Rn (10.19a) 

where 

h>O, j = 1, ... , m (10.19b) 

For convex problems, the solution i of(10.19) is Pareto optimal or functional 
efficient. lt is also called min-max optimum as it yields the "best" possible 
compromise solutionunder observance of all objective functions with equal 
priority. 

In Ref. 5, a reasonable modification of Eq. (10.19) is given for practical 
computations. It consists of the minimization of a new variable ß ( compar
able to a slack variable; e.g., see Ref. 24) while simultaneously considering 
additional constraints: 

p[f(x)] = ß " z,(x) - ß ~ 0, x E !Rn+ I, j = 1, ... , m (10.20) 

Equation (10.20) is especially useful for nonlinear optimization problems 
for the effective use of inequality constraints in the optimization algorithms 
(e.g., methods of sequential linearization) (Ref. 25). 

For the min-max formulation (10.20) a geometric interpretation can 
be given based on the hypothesis that all inequality constraints z/x) - ß ~ 0 
(j = 1, ... , m) are active within the min-max optimum i; i.e., z,(i)- ß = 0. 
Without going into a detailed proof here, we can state that there will be a 
parameter graph within the hyperspace !Rm from which one can conclude 
that the optimal solution point i must lie on a line in space. Herewith, it 
yields a first geometric place for i. The second one results from minimizing 
the distance (r = 2, Euclidean norm) between the reference pointfand any 
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p(f(x)] = Mox ( 11 !.~~- ~] 
-- 1•1,2 fj 

.!z., 
T, 1 

f1 11 

Fig. 10.10. Geometrieinterpretation of a min-max formulation for two objective functions. 

random point on the line in space. lt can be shown that this corresponds 
precisely to the minimization of ß. The min-max optimum can therefore 
be interpreted as the intersection of a line in space with the functional
efficient solution set X*. Figure 10.10 shows this for the case with two 
objective functions. 

These investigations show that there are certain interdependencies 
between the min-max formulation and the method of distance functions. 
Starting from the general distance formulation according to (10.13), the 
min-max formulation for r ~ oo (Chebyshev metric) results in 

p[f(x)] = max IJ;(x) - Y1 i, 
J~l,m 

XE IR" (10.21) 

with the components of the demand Ievel vector Yr If the minima !; of the 
individual objective function components are selected as components for 
the demand Ievel vector, and if every objective function is related to the 
respective /;, then the distance function formulation transforms into the 
min-max formulation in accordance with Eq. (10.19). 

The min-max formulation described above yields the compromise 
solution i considering all objective functions with equal priority. But if the 
single objectives have to meet a special order or if the complete functional
efficient solution set X* is of great importance for the decision maker, the 
min-max formulations can be modified or extended as follows (Ref. 26): 

Min-Max Forrnulation with Objective Weighting. The introduction of 
dimensionless weighting factors w1 ~ 0 transforms the substitute problern 
(10.19) into 

XE IR" (10.22) 
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where z1(x) denotes the samerelative deviation as in (10.19). The weighting 
factors describe the priority of the single objective functions. Thus, it is 
possible to select definite compromise solutions from random fields of 
functional-efficient sets. Moreover, the variation of wJ allows one to establish 
the complete solution set. 

A similar modification also exists for Eq. (10.20): 

p[f(x)] = ß 11 w,z,(x)- ß;::; 0, j=1, ... ,m (10.23) 

Figure 10.11 shows the geometric interpretation of Eq. (1 0.23) for the 
two-dimensional case. It is obvious that depending on the ratio w1/ w2 of 
the two weighting factors one obtains different compromise solutions 
describing the whole functional-efficient boundary. 

Min-Max Formularions by Selecting a Demand-Level Vector. If the 
definition of the relative deviations in Eq. (1 0.19b) is not based on the 
individual minima ], but on the given components YJ of the demand-level 
vector with the characteristics _v, = ],, we get analogous substitute problems 
to Eqs. (10.22) and (10.23). However, this problern formulation does not 
guarantee that all inequality constraints become active at the solution point 
x; i.e., that they can be regarded as equality constraints. Even if all inequality 
constraints become active, the solution vector x lies on the intersection of 
the line in space with the functional-efficient solution set X*. The difference 
with respect to the previously mentioned formulation is illustrated in Fig. 
1 0.12. If the line passing through the point y and defined by the relation 
w1/ w2 intersects the functional-efficient boundary, the intersection point is 
also the compromise solution. If there is no intersection point, the point 
corresponding to ] 1 or to ] 2 is the solution depending on the ratio w,/ w2 • 

p[f[xll = Max [w 1J 1~~- ~I 
-- J•U J fJ 

T, t, 

Fig. 10.1 L Min-max optimum for two objective functions under consideration of different 
weighting-factor relations. 
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w, 1. 
W2 = 3 

~+---tr~L---~--~~~~0---= 

92 

Y, 'f, 
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f, 

Fig. 10.12. Min-max optima under consideration of a demand-level vector y. 

The special selection of a demand-level vector y = 0 along with the omission 
of the division by y1 within the relative deviation z1 (x) yields a further 
modification of the min-max formulation: 

p[f(x)] = max [ w1.fj(x)], 
r=l.m 

XE IR" (10.24) 

a formulation frequently applied in practice (Refs. 5, 25). 

10.3. Establishing an Optimization Procedure 

10.3.1. Basic Considerations. Gradually, some branches of industry 
are beginning to introduce optimization procedures into the design process. 
The difficulty hereisthat the problern of component and structural optimiza
tion can be extremely nonlinear. Therefore successful application of a 
nonlinear optimization procedure on a complex technical problern calls for 
careful coordination of optimization algorithms and ofthe structural analy
sis. The finding of the "best possible structure under given circumstances" 
is always problern dependent. Thus, an optimization procedure applicable 
to all problems and at the same time efficient will be very difficult to realize. 
Supercomputers and vector Computers may help here in the future, but even 
then the circle of those who use computers with such a high efficiency will 
remain relatively small. At any rate, program system architectures for the 
optimization of component parts and structures should aim at a certain 
universality in terms of application to various types of constructions 
(modular technology). This approach, as established at our "Research 
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Laboratory For Applied Structural Optimization" at the University of Siegen 
will be described in the following. The structure of this optimization pro
cedure can be divided into three partial problems ("columns") according 

to Fig. 1 0.13. 

10.3.1.1. Mathematical-Mechanical Modeling-Structural Analysis. 
The starting point of every component optimization is to find one or several 
"first guesses" that are as suitable as possible. Thus, creativity on the part 
of the designer will be a future demand as weil. Special concentration will 

have to be dedicated to the transformation of a given, real structure into a 

mathematical-mechanical model including a reasonably applied structural 
analysis. This first step must be taken with great care because a sufficiently 
good result of an optimization calculation essentially depends on the quality 
of the mathematical-mechanical model. 

The program loop is constructed in such a way that various programs 

for structural analysis ( e.g., finite-element programs, transfer matrices pro
cedures) can be implemented (see Fig. 10.14 and Section 10.3.2). With the 

help of input information, such values as deformations, stresses, eigen
frequencies, and buckling Ioads can be calculated in the appropriate struc

tural analysis programs-i.e., all those quantities with which objective 
functions and/ or constraints can be determined. 

1[ 

I Optimizahon I 
Algorithms 

p[f(~)), \jll!l 

Problem-Programs 
.---------, 
I I 

I ! Putting in Design 
Variables 

I -Pre-Processing I 
I I 
I I 
I Optim1zahon Modeling I 
I Opt1mizahon Strategy I 
I I 
I I 
I I 
I I 
I Evaluation I 

I -Post - Process ing- I L _______ _j 

Discretized 
Model 

Structural Analysis 

~.q 

Fig. 10.14. Connection of structural analysis and optimization algorithm via the problern 

programs of the optimization model. 
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10.3.1.2. Optirnization Algorithrns. Mostsolution algorithms are itera
tive, i.e., a starting vector x0 and successive application of the algorithm 
will yield, respectively, "improved" vectors x1 , x2 , •••• While this iteration 
sequence for linear optimization problems is finite in length, i.e., the exact 
solution x* is reached after a finite number of steps, convergence toward the 
solution point can only be expected for nonlinear problems; the process is 
finished when a point "sufficiently close" to the solution is reached. 

In recent years, mathematicians have developed fairly efficient and 
reliable algorithms with regard to mathematical efficiency and numerical 
precision. Nevertheless, certain problemsarestill unsolved. In order to find 
out convergence characteristics ofthe algorithms, for example, the functions 
to be optimized need to fulfill certain mathematical characteristics like 
convexity, continuity, and differentiability, which are usually taken for 
granted without proof. One of the algorithms we used is precisely outlined 
in Section 10.3.3. The right "column" for optimization algorithms (Fig. 
10.13) shows that these algorithms are subdivided into the !arge class of 
methods of mathematical programming on the one hand, and they are based 
on optimality criteria methods on the other. For the setup of our optimization 
procedure, we applied various methods of the first class. 

10.3.1.3. Optirnization Model-Optirnization Strategy. From an 
engineer's point of view optimization modeling is of essential importance. 
It is defined as the determination of structural and design variables as weil 
as the establishing of objective and constraint functions. For some types of 
problems, this will call for an interdisciplinary exchange ofthoughts between 
various fields. 

For optimization modeling and for defining a strategy in the sense of 
vector optimization, all terms relevant to the optimization are listed and 
integrated into the main program via so-called problern programs. They 
function as a link between the optimization algorithm and the structural 
analysis. Thus, the third "column" includes allproblern specific information, 
in cantrast to "columns" ( 1) and (2), which areproblern neutral within the 
program system. Figure 10.14 shows the arrangement of these "three 
columns" of the optimization procedure in a block diagram. 

In the following, the division of the optimization process into three 
subproblems provides the premises for the development and establishment 
ofthe software system SAPOP (Structural Analysis Program and Optimization 
Procedure), which stands out by its modular structure and defined sectional 
quantities. Figure 10.15 shows the independent programs of the structural 
analysis and of the optimization procedures which are prepared in such a 
way that they can be called off as subroutines and that their data input and 
output can be coordinated. 
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Fig. 10.15. Software system SAPOP. 
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The main program SAPOP prepares the data exchange between the 
structural analysis program and the optimization algorithms. The actual 
optimization process is coordinated by the selected optimization algorithms. 
The respective structural analysis program is constantly integrated into the 
running calculations in order to analyze the current designs with regard to 
objective fun<:tion values and constraints. The essential characteristic of 
this program structure is its relatively unproblematic exchange of program 
components (modular technique ). In addition, it is possible to include 
further subprograms necessary for the treatment of special design problems 
into the program library. 

10.3.2. Method of Structural Analysis. At present, a number of very 
efficient calculation methods exist for the structural analysis of complex 
component parts under arbitrary static and dynamic Ioads. They are all 
based on the finite element method (e.g., Refs. 11, 27). For any optimiza
tion of such components, FE methods have to be integrated into the 
optimization process because of their general applicability. The calculation 
engineer, however, should keep in mind that for a group of thin-walled 
components, for example, there are also other calculation methods. These 
may be much better in terms of time spent on the optimization process. 
They may even be efficient when smaller computers are applied for the 
optimization process. One of these methods is the transfer matrices method, 
which has proved to be reliable for the component optimization of shell 
structures. It includes the FE programs SAPIV and SAPV (Structural Analysis 
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Program) and the program system ORSAB. The program system ORSAB was 
established especially for optimization problems and for calculations of 
isotropic and orthotropically stiffened shells of revolution of arbitrary 
meridional shape under various Ioads (Ref. 12). 

10.3.3. Optimization Algorithms. As mentioned in Section 10.3.1, it 
is difficult to give preference to a certain algorithm for nonlinear problems 
of structural optimization because of their problern dependence. In connec
tion with the elaboration of an optimization procedure, a !arge number of 
efficient algorithms have been established and tested in order to reduce the 
computing time and to increase numerical convergence. In the following, 
the optimization algorithm which successfully solved various complex 
optimization problems will be briefly described. 

Approximation Method of Sequential Linearization (sEQLI) (Ref 
8). For the nonlinear starting problern one formulates a subproblern which 
can easily be described in an analytical way, and solves it with appropriate 
strategies. Here, the method of sequential linearization is known for its 
efficiency. It reaches a solution of the starting problern by a sequence of 
linearizations. 

The cutting plane methods use a step-by-step covering of the feasible 
domain by linearized constraints; i.e., with every iteration new linear 
inequality constraints are added which cutoffapart of the previous domain. 
The interim solutions are found with the SIMPLEX method; the objective 
function is assumed to be linear. 

By introducing lower and upper bounds for all design variables (hyper
cube, move Iimits), Griffith and Stewart ( Ref. 9) expand the application to 
problems whose solutions do not lie in the intersection of constraints but 
generally on a distorted hypersurface. Objective functions and constraints 
of the nonlinear scalar starting problern are developed into a Taylor series 
around a point x'. The retention of only the linear components yields 

f(xk + öx) = f(xk) + v f(xk )öx 

h,(xk + öx) = h,(xk) + v h,(xk)öx, 

gj(xk + öx) = g,(xk) + vg,(xk)öx, 

i=1,2, ... ,q 

j = 1, 2, ... 'p 

(10.25) 

(10.26) 

The design space of the Iinearized problern is additionally restricted by a 
hypercube 

i=1,2, ... ,n (1 0.27) 

because Taylor's expansion is valid for small öx only. 
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Salutions of Eqs. (10.26) are found with the SIMPLEX method. lts use 
requires that the variablesbeI arger than zero. Therefore, a linear transforma
tion of the variables is carried out: 

y, = l>x, + (x~ - x7r), i = 1, 2, ... , n 

The linearized problern then reads: 

subject to 

min {cT y} = cT y* 
y 

c = "ilf(xk) 

(10.28) 

(10.29) 

as weil as the linearized constraints h,(y), g1 (y), and the hypercube as defined 
by the inequalities (1 0.27). 

The solution y* ofthe linearized problernthat was found with Dantzig's 
SIMPLEX algorithm teads to an improved xk+J for the nonlinear model. 

with 

The hypercube is reduced by means of correction rules: 

k+l 
k 

a 
a ----

1 + ak 

(10.30) 

Because of the equation limk-m a k = 0, the lateral lengths of the hypercube 
become continuaily smailer during the course of the optimization process. 
Figure 10.16 shows the procedure of SEQLI in the two-dimensional case. lt 
becomes evident that the optimization process is very much dependent on 
the choice of the starting hypercube, and that the method converges faster 
owing to the active constraints. Figure 10.17 demonstrates the computer 
Operation of the SEQLI-approximation method. A detailed description is 
given in Ref. 8. 

10.4. Optimum Design of Highly Aceurate Focusing Systems 

A practical application of the optimization strategies and procedures 
treated in Sections 10.2 and 10.3 is to figure out the Iayout of components 
for highly accurate focusing systems. Typical examples are parabolic anten
nas and optical telescopes, as weil as solar-energy coilectors. Their tasks 
and performances are to focus various radiations in a focal point or line. 
They are briefiy introduced in the foilowing. 
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Fig. 10.16. Optimization procedure SF.QLI in the !wo-dimensional case. 
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Fig. 10.17. Block diagram for SEQLI. 
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10.4.1. Parabolic Antennas--Radiotelescopes. Antennas can be 
defined as so-called wave-type transducers. As transmitting antennas they 
transform cable-guided high-frequency energy into wave types convenient 
for an extension into free space, and as receiving antennas they retransform 
the energy taken from free space into cable-guided waves. Apart from that, 
one tries to achieve a transformation from one condition into the other one 
with the least possible Iosses in order to get optimal antenna gain. The 
transmission and reception of waves in the dm, cm, and mm range (micro
wave range) is usually realized by means of parabolic reflectors working 
according to the laws of geometrical optics. Appropriate reflector types are 
the rotational paraboloid, off-sets of a rotational paraboloid ( off-set design), 
and the parabolic cylinder (Fig. 10.18) (Ref. 28). 

10.4.1.1. Fundamentalsand Description. The rays radiated from the 
focus of a paraboloid during transmission are reflected on its surface and 
leave the mirror as parallel, in-phase rays. This process is reversed for wave 
reception. The in-phase condition of the rays essentially depends on the 
existence of an accurate parabolic surface. As the ray reception is analogaus 
tothat of optical astronomy, radio-astronomers usually call their parabolic 
antennas "radiotelescopes" in cantrast to the "mirror telescopes" in optical 
astronomy. Ideally, all incident rays should intersect in the focus assuming 
an ideal surface as exact as possible in any given position. Because of this 



www.manaraa.com

332 Hans A. Eschenauer 

b 
a. 

Fig. 10.18. Reflector types of a parabolic reftector; (a) Paraboloid with circular aperture; (b) 
off-sets of a paraboloid (off-set reflector); (c) parabolic cylinder. 

demand, the refiector and its supporting structure are among the most 
important components of a movable parabolic antenna. In practice, 
however, such a highly accurate surface is hardly attainable. 

The refiector consisting of single and adjustable panels (Fig. 10.19) 
supported on a rear spatial framework is deformed both by dead weight 

Fig. 10.19. Design of a parabolic reflector with circular aperture in panel surfaces. 
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and by wind and temperature Ioads. Furthermore, there are manufacturing 
tolerances and measuring and adjusting faults during the positioning of the 
reflector surface as weil. Because of these systematic and statistical differen
ces, the phases of the individual rays will be different. Part of the energy 
will be diffused and radiated towards other directions. According to Ruze 
the reduced gain can be described by a Gaussian error equation (Ref. 29): 

G = e-(4-rr<T/A)' 

Go 

The relation G / G0 expresses the "efficiency" of an antenna with 

(10.31) 

(10.32) 

as the "gain" of an ideal parabolic antenna and Tl the surface efficiency 
(Ref. 30), D the aperture diameter, A the wavelength, and er the standard 
deviation or root mean square value (rms value) (Ref. 31). The rms value 
er is defined as a measure for the surface accuracy. It is determined by 
the method of least squares with a "best-fit" surface being described by 
a set of given points n of the deformed and imperfect reflector surface 
(Refs. 31, 32). 

Since the efficiency of a parabolic antenna depends substantially on 
the surface accuracy, the rms value plays the most important roJe besides 
the weight for the Iayout of an antenna. Therefore, Iet us first take a closer 
Iook at the rms value as an objective function. 

Starting with an ideal axisymmetric paraboloid 

x2 y2 
z(x y) = -+-

, 4f 4f (10.33) 

as the nominal surface of an antenna reflector, deformations, fabrication, 
and adjustment errors with stochastic distribution yield an actual surface 
described by an elliptical best-fit paraboloid. 

The normal equation of the best-fit paraboloid in a g'r/( coordinate 
system (Fig. 1 0.20) can be expressed by the so-called "homology para
meters"; these are three translations of the apex, two rotations, and two 
alterations of focal length: 

(1Ö.34a) 

or, in implicit form 

(10.34b) 
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Fig. 10.20. Nominal and actual 
surface of a parabolic 
antenna reflector. 

The orientation is described in terms of the Euler angles (Fig. 10.21): 

{} := (z, n nutation angle ( 0 ~ {} < ~) 
1/1 := (x, OC) precession angle (O~f/;<27T) 

cp := (OC, 0 angle of pure 
rotation (O~cp<27T) 

Every arbitrary position of the g77~ -system is described by three rota
tions in sequence: 

(10.35) 

with C as the transformation matrix of the total rotation. 
The transformation equations between the original and rotational sys

tem then are 

X= Xo + C~ 
~=CT(x-x0) 

(10.36a) 

(10.36b) 

For establishing the error equations, a transformation of Eq. (10.34b) 
into the xyz system yields 

F(x, y, z; h1 , ••• , h1) = 0 (10.37) 

Fig. 10.21. Description via Euler's angles. 
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h6:=ft;, 

h? := fTI. 
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(10.38) 

If the points P, are to lie on the desired best-fit paraboloid, then the 
xj, y., zi must satisfy Eq. (10.37). In general, this is not exactly the case and 
there exist residual deviations 

(10.39) 

For n > 7 the system of homology parameters cannot be uniquely deter
mined. 

The compensation demand follows by means of the method of least 
squares: 

n 

Q(hl, ... ,h1):= I v7=vTv~min (1 0.40) 
i=l 

This relation for the residual deviations is highly nonlinear. Under the 
assumption of small deformations, a linearization can be carried out: 

v = v0 + Fßh (10.41) 

with 

(10.42a) 

and 

av1 av1 av1 

ah! ah2 ah1 
( n x 7) error equation matrix (10.42b) 

avn avn avn 
ah! ah2 ah1 
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Tagether with Eqs. (10.40) and (10.41), one then has the following 
stationarity conditions: 

aQ T T -- = 0 ~ F Fßh + F v = 0 
a(ßh) o 

(10.43) 
Nßh = r 

The normal equations result in a system of linear equations for the seven 
unknown corrections ßh 1 , ••• , ßh7 • Here, 

(10.44a) 

is the symmetrical (7 x 7)-normal equation matrix with the elements 

( 10.44b) 

and 

( 10.45) 

is the right-hand side of the system of equations. 
The normal distances between the individual points of the deformed 

state and the best-fit paraboloid are then tobe calculated (Fig. 10.22). The 
condition 

lv"'l = P}, ~min (10.46) 

yields a cubic equation for the determination of the normal distances. 
Finally, the rms value is given by the objective function 

CI:= (2) 1/2 = [ VT V J 1/2 (10.47) 
n n- (7- nu) 

with n the number of degrees of freedom, and nu the number of restricted 
degrees of freedom. The vector v includes the residual deviations from the 
best-fit surface. 

Fig. 10.22. Normal distances between an actual 
deformed point and the best-fit 
surface. 
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Fig. 10.23. Beam characteristic (pattem) of a 
parabolic antenna. 
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A further demand on reflector design is that the weight W should not 
exceed a certain permissible value in order to yield as !arge a lowest 
eigenfrequency as possible (~ 3 Hz) (Ref. 33). The pointing, or beam charac
teristic describes the radiation gain as a function of the space angles cp, {}. 
The main lobe lies within the main radiation direction of the diagram. The 
part of the radiation outside of the main lobe is called scattered radiation 
(side Iobes). Figure 10.23 shows a section {} = const through such a pointing 
pattern. The width ofthe main lobe is a measure for the energy concentration 
and is expressed by the half-power width 'PH· As soon as a position 
information is given manually or by program, the pointing accuracy sets 
the Iimits for the high-frequency axes (Ref. 34). 

Large parabolic antennas for the GHzrange have very narrow pointing 
patterns which require extremely accurate positioning. The pointing error 
may not amount to more than a fraction of the half-power with 'PH· Here, 
it must be considered that the total error consists of errors of the servo
system, adjusting errors, and errors due to deformations of the supporting 
structure and the subreflector (Ref. 35). 

Essentially, all points above the horizon should be accessible to an 
antenna. This demands that the reflector can be tilted around two axes. 
There are two basic mountings: 

1. Parallactic or equatorial mounting (Fig. 10.24a). Here, the hour axis 
is directed parallel, the declination axis vertical to the earth axis. This type 
of mounting has the advantage that the earth's rotation can be compensated 
for by rotation around the axis. 

2. Alt-azimuthat mounting (Fig. 10.24b). The azimuthat axis is placed 
vertical to the horizontal elevation axis. A rotation around both axes is 
necessary to compensate for the earth's rotation. 
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QXIS 

r'--_"_- declmotlon elevotion oxis 
OXIS 

the 

to 

a. b 

Fig. 10.24. Mountings of a parabolic antenna: (a) Equatorial mounting; (b) alt-azimuthal 
mounting. 

For instruments of optical astronomy, asymmetric parallactic mount
ings are actually preferred; azimuthat mounting is applied for parabolic 
antennas or radiotelescopes because of the size of the instruments and the 
simpler methods of manufacturing and erection. Owing to the improvements 
in computer technology, the compensation for the earth's rotation is no 
Ionger a problem. 

10.4.1.2. Optimization Modeling and Results. On the basis of techno
logical fundamentals, optimization models are stated, and the developed 
optimization procedures are applied. They deal with the optimal design of 
reflector supporting structures and the accompanying panel structures of 
radiotelescopes for the millimeter and submillimeter wave range (Refs. 
36-40). Various optimization computations for different versions (plane and 
spatial trusses) of a 10-m-submillimeter-wave radiotelescope have been 
carried out (Ref. 41). One typical example of such a supporting structure 
is shown as a spatial plot in Fig. 10.25. Its frame bars are made of CFC 
material ( carbon fiber composite) in order to reduce temperature deforma
tions. The cross sections A, of different bar groups and the reflector heights 
z1 of the supporting structure are combined in the design variable vector 

X T = ( A 1 , ••• , Ai, Z 1 , ••• , Z1 ) E IR n 
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,, 

Fig. 10.25. Spatial plot of a reflector supporting structure. 

By means of the optimization process, the demanded objectives "weight 
W" and "shape deviation a-" according to Eq. (10.47) are to be fulfilled 
in the best possible way subject to the load's dead weight, wind, and 
temperature. These competing objectives can be expressed by an objective 
function vector 

w dead weight 

U"z rms value for 1 g zenith position 
(J"H rms value for lg horizontal position 

f(x) = U"o rms value for wind oo 
(J" 50 rms value for wind 50° 
a-90 rms value for wind 90° 
(J"T rms value for temperature 

U"t;.T rms value for temperature gradients 

Apart from the restrictions of the different design variables, the fulfilling 
of the pointing accuracy is one of the essential inequality constraints. For 
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Table 10.1. Comparison of Optimization Results at Different Combinations of 

Design Variables 

rms values (!Lm) 

No. Loads Starting design (1) (2) (3) 

I lg horizon 16.0 9.1 8.1 8.7 
2 1g zenith 5.7 3.2 4.6 2.9 
3 Wind oo 2.7 1.5 2.3 1.4 
4 Wind 50° 10.8 6.5 7.8 6.3 
5 Wind 90° 7.5 4.4 5.0 4.2 
6 Weight (N) 19,900 24,800 25,900 24,900 

the calculation of the so-called pointing error, different relations are given 
( e.g., see Ref. 35). 

This contribution cannot give all details of the calculations and investi
gations. We therefore refer to numerous publications and Institute reports. 
Table 10.1 presents the results of optimization calculations for various 
combinations of heights and bar cross-sections (DV = design variable): 

Case 1: First, optimization of the construction height (2DV); then, cross
sectional optimization (7DV). 

Case 2: First, cross-sectional optimization of the bars (7DV); then, 
optimization of the construction heights (2DV). 

Case 3: Simultaneaus optimization with all design variables (9DV). 

Here, the optimization algorithm SEQAH (Ref. 40) has been applied 
with the quadratic distance function as preference function. 

A comparison ofthe respective results shows that simultaneaus applica
tion of the design variables yields the best results. For the Ioad 1 g horizon, 
Fig. 10.26 compares the contour !in es of the deviations from a "best-fit" 
paraboloid of the starting design and the optimal design, while Fig. 10.27 
shows the optimal design starting with five different initial designs and two 
design variables. 

10.4.2. Solar-Energy Collector. The basic unit of a solar energy plant 
is the collector. It absorbs radiated solar energy and transforms it into heat, 
which is led into a heating medium. Paraboloid cylinders or paraboloid 
collectors (Figs. 10.18a and 10.18c) belang to the concentrating systems. 
First, a parabolically curved reflector concentrates solar radiation onto a 
"focalline" or "focal point." Here, the radiation is absorbed by a cooled, 
thin black-coated pipe or tube. This part of the collector is called the 
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Startmg design 

Load 

nns-value 

Load 
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: 1-g-horllon 

: 9,0 lJill 

: 1-g-hor1zon 

: 4,2 lJill 

Fig. 10.26. Camparisan of the distances of a "best-fit" paraboloid (BFP) for the Ioad lg 
horizon of a starting design and an optimal design. 



www.manaraa.com

• 
V

er
si

o
n

s 
s 

1 

D
es

ig
n

 
V

a
ri

a
b

le
s 

I 
'7

U
 

I 
{m

m
) 

x
1 

..-
..-

3 
1

7
0

0
 

o
[r

m
s]

 
(p

a
) 

1
g

-h
o

r.
 

1
6

,0
 

1
g

-z
en

. 
5

,7
 

w
in

d
 o

o 
2

,7
 

w
in

d
 

5
0

°
 

1
0

,S
 

7
,5

 
w

in
d

 9
0

°
 

5
,7

 
t.

T
 

z 
-2

0K
 

Fi
g.

 1
0.

27
. 

I 
N

 I
 

T
 

I 
A

 
L

 
D

 E
 

S 
I 

G
 N

 S
 

s 
2 

s 
3 

s 
4 

s 
5 

2
0

0
 

I 
I 

76
5 

I 
7

6
5

 
, 

7
0

0
 

1
7

0
0

 
1

7
0

0
 

, 
0

0
0

 
3

0
0

0
 

1 
7

. 1
 

1
5

.9
 

1
5

,8
 

1
9

.3
 

0
,8

 
5

,9
 

, 
6

.,
 

9
,6

 

3
,7

 
2

,3
 

11
 ,

4
 

5
,7

 
1

2
,5

 
9

,7
 

3
5

.3
 

1
0

,5
 

8
,2

 
6

,9
 

2
2

,7
 

7,
.C

 
5

,7
 

5
,9

 
5

,5
 

6
,0

 

O
pt

im
iz

at
io

n 
of

 d
es

ig
n 

he
ig

ht
s 

o
f 

a 
10

-m
 S

ub
m

il
li

m
et

er
 R

ad
io

te
le

sc
op

e 
re

fl
ec

to
r.

 

I 

O
p

ti
m

u
m

 
D

es
ig

n
 

1 
l)

l 
15

'7
3 

1
5

.1
 

5
,1

 
2

,5
 

1
0

,7
 

7
,5

 
5

,8
 

~ :I:
 ., =
 

"' ?>- t"1
 "' .., =- .. =
 ., =
 

!!l 



www.manaraa.com

Highly Aceurate Focusing Systems 343 

sunrays 

frustum she/1 

Fig. 1 0.28. Focal line of a solar collector consisting of frustum shells. 

absorber. Within the scope of a research project, optimization investigations 
have been carried out on a specialtype of concentrating collector. lts focus 
of radiation and accordingly its absorber are in the rear of the collector 
(Fig. 10.28). Therefore, it is called a "rear-focus collector" in contrast to a 
"front-focus collector". The actual reflector consists of several frustum-type 
shells linked together by ribs (Ref. 42). 

The system efficiency of concentrating collectors essentially depends 
on the geometry and the shape accuracy of the reflector. In various respects, 
its modes of operation are very similar to those of parabolic antennas (Ref. 
28). The solar radiation striking the entry plane A., also called the collector 
aperture plane, is reflected and concentrated onto an absorber with a small 
surface Aa (Fig. 10.29). Such collector systems are suitable for a range of 
application where temperatures over some hundred degrees centigrade are 
to be produced ("solar furnaces"). 

The transformation efficiency of solar energy into thermic energy, the 
so-called system efficiency, is defined as follows (Ref. 42): 

TJ = ct'abs 'YPr -

Fig. 10.29. Concentrating para
boloid collector. 

sunray 

4con + 4rad 

IC 

absorber plane 

Aa 

( 10.48) 
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with aabs the solar absorption capability [-], 'Y an intercept factor [-], p, 

the reflectivity of the reflector [-], 4con the Iosses at the absorber due to 
convection [W I m2], 4rad the Iosses at the absorber due to radiation (W I m2], 

I the solar radiation density [Wim2], and C a concentration factor [-]. 
To establish an objective function for the optimization problem, the 

two relevant variables of Eq. (10.48) will be briefly explained. 
The concentration factor C is a measure of the efficiency of a concentrat

ing collector. It is defined as 

(10.49) 

with A. the area of the entry plane, collector aperture plane (Fig. 10.29) 
and with Aa the area of the absorber plane. 

The interceptfactor 'Y is a measure ofthe quality ofthe focusing process. 
lt describes Iosses at the collector. Ideally-i.e., when all reflected radiation 
reaches the absorber-it follows that y = 1. The intercept factor is defined 
as 

Radiation reaching the absorber 
y= 

Incoming radiation 
(10.50) 

lt is determined by the geometry of the reflector, its shape accuracy under 
Ioad, and the manufacturing methods used. 

Another influence on the system efficiency, as for antennas, is the 
so-called pointing error. In order to keep the absorber always within focus 
of the reflector, pointing devices are needed to follow the position of the 
sun. These become the more costly the higher the concentration factors to 
be reached. Tracking errors result in an immediate decrease of efficiency. 

The frustum shell reflector does not have an actual focal point in the 
absorber center, but rather a focal line (Fig. 10.28). The radiation concen
trates at a certain distance from the centrat point of the absorber. The 
distances are dependent on the geometric order of the frustum shells and 
on the deformation behavior of the reflector; i.e., they can be minimized 
by means of appropriate designs. The values s ;•r of the distance of the 
incidence point on the absorber plane from the absorber central point can 
be calculated for each point P;'/ of the frustum shells (Fig. 10.30). 

As a first objective function we formulate the standard deviation of the 
distance values s ,·r= 

(10.51) 

with v the deformation vector, x design variables, and n the number of 
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Fig. 10.30. Path of the ray. 
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points considered. The indices with a prime are referenced to the deformed 
structure. 

The second objective function, the volume of the structure, is also to be 
minimized. lf the thickness of the shells is assumed constant, the requisite 
function is 

(10.52) 

with a; the gradient angle of the shell i, f, the length of the shell i, X; 1 the 
abscissa of the lower point of the shell (Fig. 10.31), and t, the thickness of 
the shell i. 

The objective of the first optimization calculations was to determine 
the best possible spatial position of shells. Thus, deformations were not 
considered. Each undeformed shell i is completely determined by the 
following four design variables (Fig. 10.31): 

X; 1 , the abscissa of the Iower point Pil 

Yil, the ordinate of the lower point P, 1 

I;, the Iength 

a" the gradient angle 

Thus, for n shells we get 4 x n design variables. 
Within the modeling process, the following constraints have to be 

considered (Ref. 42): (I) Limitation of the collector aperture plane, (2) no 
shading (Fig. 10.32a), (3) no ray obstruction (Fig. 10.32b), and (4) Iimitation 
of the incidence angle of rays. 
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)( Fig. I 0.31. Design variables of an undeformed shell. 

she/11+1 
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I+ 1 

sunray 

she/1 i 

X 

Fig. 10.32. Constraints: (a) Shading; (b) ray obstruction by conical shells. 

Because of the numerous trigonometric relations within the model 
equations, the formulation of the optimization model for the rear-focus 
collector type is a highly nonlinear problem. The optimization calculations 
were carried out by different algorithms, among others the EXTREM method 
by Jacob (Ref. 8) and sequential methods. Here, the constraint-oriented 
transformation also proved to be the most efficient optimization strategy. 
The result of the optimal concentration factors for the single shells and the 
total arrangement in dependence of the number of shells is shown in 
Fig. 10.33. 

The optimal design and the starting design of a collector with a 7-m 
outer aperture diameter and with seven frustum shells are shown in Fig. 
1 0.34. It is required that the C value should be !arger than 600 and the 
absorber diameter smaller than 17 cm. The actual values finally were C = 

677 and d = 16.4 cm. 

10.4.3. Optical Telescopes. Meanwhile, !arge optical telescopes 
according to the azimuthal mounting have been erected both in the USA 
and the Soviet Union; in Western Europe similar research projects are in 
progress. 
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Fig. 10.35. Schematic of a new-technology telescope (Ref. 43). 

Within the scope of a research study ofthe European Southern Observa
tory (ESO), an association of six West European countries for exploring 
the southern hemisphere, our optimization procedure was applied to the 
Iayout of a fork of such a new-technology telescope (NIT) with a 3.5-mm
diam mirror (Ref. 43). The main demand for such a novel telescope concept 
is the high tracking and pointing accuracy only to be achieved by high 
stiffness of the fork and the tubus, respectively. 

The optimization calculations for the fork were based on vector 
optimization for the following five objective functions: 

f(x) = [};(x), ... .f,(x)JT 

with f 1(x) g m the mass of the fork, / 2(x) g c~ 1 the flexibility of the fork 
in the x direction, };(x) g c~ 1 the flexibility of the fork in the y direction, 
fix) g c; 1 the flexibility of the fork in the z direction, and / 5(x) g w the 
deformation of the plate under a single Ioad. 

Altogether, 12 design variables were established on the basis of cross
sectional dimensions and the geometry of the fork (main dimensions). The 
calculation itself was carried out by means of the SEQAH algorithm ( Refs. 8, 
40). The results for the single objective functions in dependence on the 
number of iterations are shown in Fig. 10.36. The calculated stiffnesses and 
deformations feil within the specified rang es (Ref. 43 ). 
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Fig. 10.36. Objective functions of the fork of an NT telescope as a function of the number 
of iterations. 

10.5. Summary 

This chapter is a presentation of extensive investigations on the theory 
of vector optimization and its application in the development and Iayout of 
components and structures. Primarily, the reason isthat today the manufac
turing of machines not only requires minimizing costs but also observes 
such objectives as shape accuracy and reliability. Such problems can be 
defined as "optimization problems with multiple objectives" (multicriteria 
optimization, vector or polyoptimization, Pareto optimization). Hereby, the 
mostly competing and nonlinear objectives do not Iead to one or several 
solution points for the optimum but rather Iead to a "functional-efficient" 
or "p-efficient" solution set; i.e., the decision maker selects the most efficient 
compromise solution out of such a set. The use of preference functions or 
quality criteria transforms the vector optimization problern into a scalar 
substitute problem. This so-called optimization strategy is a basic part of 
modeling. For the transformation, a number of preference functions such 
as objective weighting, distance functions, constraint-oriented transforma
tion (trade-off method) and min-max formulation have·been analyzed and 
tested. It was shown that the efficiency of the single preference functions 
depends both on the problern and on the adaptation to certain optimization 
algorithms (mathematical programming). 



www.manaraa.com

350 Hans A. Eschenauer 

The software package SAPOP was developed as an optimization pro
cedure on the basis ofthe three columns "structural analysis," "optimization 
algorithm," and "optimization modeling." SAPOP connects problem-depen
dent optimization and structural analysis methods by a so-called problern 
pro gram. Section 10.4 shows the applications and tests of the efficiency of 
the developed optimization procedure on a special task of structural 
mechanics, e.g., the optimum design of highly accurate focusing systems 
(giant parabolic antennas, solar collectors, optical telescopes). 

List of Symbols 

1. Subscripts and Notations 

The following Iist is restricted to the most important subscripts and 
notations. Further terms are given in the text. 

* 
V 
Boldface 

Sans serif 

11 
a := b 

a := b, c 
'v'a:A 
a~b 

A~B 

XE M 

XeM 
McN 

MnN 

Asterisk above a Ietter on the right means the optimal value 

Nabla operator 

Vector, e.g., x 

Tensor or matrix, e.g., H 

Difference 

Quantity a is defined by quantity b 

Quantity a is valid under the assumption b, c 

All elements a that have the attribute A 

Quantity a is identically equal to quantity b 

A is a sufficient condition for B 
x is an element of set M 

x is not an element of set M 

Set M is a subset of set N 

Intersection of set M and set N 

2. Latin and Greek Letters 

D 

f. f, f. 
Aperture diameter 
Objective function, objective function vector, ith coordi

nate function of the vector f ( i = 1, ... , m) 
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G/G0 

h, h; 

H 

L 

La 
p[f(x)] 

IR" 
s 
sk 
T 
U,(x*) 

V 

V 
w 

X, X; 

i 

Xo 
x* 

X 
X* 
y 
y 
aY* 

w 

Individual minimum of the jth objective function jj 
Vector of the inequality constraints, jth inequality con-

straint (j = 1, ... ,p) 
Efficiency of an antenna 
Vector of the equality constraints, ith equality 
Hessian matrix 
Unity tensor 
Lagrange function 
Augmented Lagrange function 
Preference function, substitute objective function or quality 

criterion of optimization strategies 
n- Dimensional Euclidean vector space 
Convergence certainty 
Search direction vector of the kth step 
Transformation matrix 
e Neighborhood of the point x* 
Vector of the residual deviations of the "best-fit" surface 
Volume 
Vector of the weighting factors 
Vector of IR", designvariable vector, designvariable (i = 

1, ... , n) 

Compromise solution (substitute solution) of a vector 
optimization problern 

Starting vector 
Optimal point, efficiency vector, functional-efficient vector 
Domain of definition, feasible domain 
Complete solution set of a vector optimization problern 
Point of the functional-efficient boundary 
Vector of the demand Ievel 
Efficient boundary of the set Y 

Relative deviation of the objective function j 
Lagrange multipliers 
Functional space 
Step width 
Eigenfrequency 
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Natural Structural Shapes 
(A Unified Optimal Design Philosophy) 

WOLFRAM STADLER1 

11.1. Introduction 

Good design is based on a thorough understanding of the limitations 
imposed by natural law as weil as the existent technology. In 1775 the 
Parisian Academy of Seiences ceased to accept papers concerning perpeda 
mobilae based on the universal observation that all motion within our 
experience eventually attenuates unless some sort of driving force sustains 
it. Such machines were later recognized to be in confiict with the second 
law ofthermodynamics in that they implied entropy generation. The design 
of substances and materials is limited by the fact that there are numerous 
chemical reactions that cannot take place and chemical bonds that cannot 
be sustained. In mechanical behavior, the amount of force available implies 
clear limitations on the speed that a particle can achieve in a given amount 
of time. On a more subtle Ievel, there are motions in particle dynamics that 
cannot be sustained by noncentral forces, and so on. What is clear is that 
all design is subject to the limitations of natural law or, more precisely, 
naturallaw as now understood. A clear understanding ofnatural phenomena 
can overcome perceived limitations of false theories. Therefore, in order to 
free ourselves from the shackles of such false limitations, our primary efforts 
must be directed toward an understanding of naturallaw. Our designs then 
will refiect this understanding. 

There are two overalllimitations on every design process: the Iimitation 
imposed by naturallaw, refiected in the postulates of the relevant theories, 
and the limitations imposed by the available technology required to 
manufacture a given design. All too often the latter is taken as the critical 
Iimitation, when instead we should first find the best design possible within 
an axiomatic structure, and then strive to develop the technology capable 
of achieving it. The concept of natural structural shapes is founded on this 

1 Division of Engineering, San Francisco State University, San Francisco, California 94132. 
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latter premise, as evidenced within mechanical theories. Formally, the 
concept is based on the following broad hypothesis. 

Hypothesis. Natural processes will ultimately evolve designs that 
fulfill their purpose in an optimal fashion. 

The naturalness of a process is taken to be described by the axioms of 
a particular theory. It is assumed that regardless of any random steps in 
the evolutionary process, the surviving end result (possibly after a theoreti
cally infinite amount of time) is an optimal design representing the best 
possible design within the given axiomatic framework. The optimum is 
generally taken to be determined by the choice of suitable criteria and an 
optimality concept such as Edgeworth-Pareto optimality. To date, the 
emphasis has been on the discovery and definition of natural shapes within 
the purely mechanical theory of continua, the topic that is central to this 
chapter. 

Although the particular multicriteria approach presented here is new 
(the author began work on the subject in 1972), there have been a number 
of other authors who have attempted to identify shapes in nature that are 
designed optimally for their purpose. One need only recall the beautiful 
studies of D'Arcy Thompson (Ref. 1) and, more recently, the papers by 
Thomas McMahon (Refs. 2 and 3) on the mechanical design oftrees, Illert's 
work in conchology (Ref. 4), and Roger Jean's recent monograph on pattern 
and form in plant growth (Ref. 5). In mathematics it is the fractal geometry 
of Benoit Mandelbrot (Ref. 6). Rechenberg (Ref. 7) postulated that biologi
cal evolutionwas an optimal strategy in adapting organisms to their environ
ment and used such essentials of the process as mutation and selection to 
derive optimal designs. Thus, bis hypothesis is similar in spirit, but bis 
approach to its realization in optimal design is completely different. The 
concern here is modeling the end result rather than the intermediate steps 
taken to arrive at the result. 

There are two further philosophical aspects to the present approach 
to optimal structural design. Clearly, the method can stand on its own merits 
as long as the corresponding optimal designs exhibit desirable properties. 
The less tangible aspects are those that refer to the naturalness ofthe design. 
To establish these claims, the design must be based on a proven model of 
the physical situation and the final optimal design should provide a reason
able match with what can be termed the end result of an evolutionary 
process. The primary aim here is to match geometric shapes in nature. There 
are a number of obvious examples of shapes that have survived for millenia, 
such as seashells, stalactites, the bases of trees, the effects of erosion, and 
so on. This survival should be an excellent indicator that they must indeed 
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be optimal for the purpose that they serve. In order to formulate a corre
sponding optimal design problem, it remains to discover and quantify the 
purpose as well as the optimum. The author's claim in this connection is 
that for structures, whether natural or otherwise, their purpose is generally 
described by loads and boundary conditions; any Edgeworth-Pareto design 
for the criteria mass and strain energy of the loaded structure is taken to 
be an optimal design. 

11.2. A Simple Example 

The discussion here is based largely on Ref. 8. Among structural 
engineering theories, the model for the axial extension of a simple bar serves 
as an ideal first example. All of the needed steps are there, unobscured by 
extended calculations. 

Consider a bar of fixed length L, supported at its lower end, with 
constant mass per unit volume p, and with given modulus E. The bar is 
loaded by a downward Ioad Q at the free end and by its own weight. The 
resultant internal force at the section identified by x is 

R(x) = -Q- pg LL A(g) dg 

with displacement gradient given by 

dy (x) = R(x) 
dx EA(x)' 

y(O) = 0 

where y( · ) : [0, L] ~IR is the displacement of a cross section located at x, 
A( · ) : [0, L] ~ IR is the possibly varying cross-sectional area, and g is the 
gravitational acceleration. The total mass and the stored energy ofthe loaded 
structure are given by 

fL w=!fL R\g) d 
.At = 

0 
pA(g) dg and ca 2 0 

EA(g) g 

Fig. 11.1. An axially loaded bar. 



www.manaraa.com

358 Wolfram Stadler 

respectively. The problern is translated into standard control theoretic nota
tion by introducing the nondimensional variables 

and 

X 
t =

L' 
x(t) = y(~L), Q 

w =......-
Q' 

R(tL) f1 
xz(t) = -----.r- = -w- k2 u(g) dg, 

Q I 

u(t) = A(~L) 
A 

ALpg 
k2=---

Q 

where Ö and A are some force and area, used as nondimensionalizing or 
normalizing constants. 

With the admissible set 9' defined in part by U = {u E IR: 0 < u < oo} 
and u( ·) Lebesgue measurable (certainly not a physically tenable assump
tion), one has the following multicriteria optimal control problem: Obtain 
Edgeworth-Pareto (EP) controls u( . ) E g; for the criteria 

.!U f 1 AEg' 1 f 1 x~(g) g1(u( ·)) = pAL = 
0 

u(g) dg and g2(u( ·)) = Q2 L = 2 
0 u(t) dg 

subject to 

ö kl = -.-
AE 

x2(0) arb., 
(11.1) 

where the dot denotes differentiation with respect to t. Thus, the fixed 
parameters in the problern are k1 and k2 , the state variables are x1 and X 2 , 

and u is the control parameter. The objective is to obtain among all possible 
nondimensional area distributions those that are optimal in the sense just 
defined. Note that even this simplest of problems is a nonlinear multicriteria 
control problem. 

As always, the solution begins with the application of necessary condi
tions in the form of the maximum principle (Chapter 1, Theorem 1.2). The 
Hamiltonian is 

I X~ X2 
ile(A, x, u) = -c1u- :zc2- + A1k 1 - + A2k2u 

u u 

with ( c1 , c2 ) ~ 0, and with corresponding adjoint equations 

. aile . aile x2 k1 
A1 = --=0 and A2 = --= c2 --A~-

ax1 ax2 u u 
(11.2) 

An application ofthe transversality conditions at both ends yields A1(1) = 0 
and A2(0) = 0, so that A1(t) = 0 follows. The abnormal problern with 
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c1 = c2 = 0 implies Ai t) = 0, a violation of the necessary conditions. Thus, 
( c1 , c2) 2:: 0 is assumed for the remaining calculations. 

With u( ·) unconstrained, a necessary condition for :le( ·) to have a 
maximum with respect to u is given by 

which implies 

and, hence, 

u = - [2( C1 - A2k2) r/2 

where x2 < 0 and A1(t) = 0 have been taken into account. The substitution 
of this expression into the second of the adjoint equations (11.2} results in 

v'2(cl- A2k2) 112 = k2..fC:zt + v'2..JC; 

Consequently, 

u(t) = 
x2(t) 

A substitution thereof into the second of the state equations (11.1) yields 

xir) = 
w(k2 + 8) 

along with the displacement 

x1(t) = -!klt(k2t+2e) 

The corresponding EP extremal area distribution is 

A )_w(k2+8) 
u(t - (k )2 2t + (J 

(11.3) 

Note the use of the attribute EP extremal rather than EP optimal at 
this point. Quite generally, solutions that satisfy necessary conditions only 
are called extremal rather than optimal. That the control ( 11.3) is indeed 
optimal follows from the use of sufficient conditions embodied in the 
scalarization Lemma 1.6 of Chapter 1 in conjunction with the sufficiency 
conditions from optimal control (Theorem 11.1 of Section 11.3}. 
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It need only be shown that 

G(u( ·)) = ctgt(u( ·)) + c2g2(u( ·)) 

attains a minimum for u( ·) above with C = ( Ct. C2) > 0. The most obviOUS 
candidate for the absolutely continuous function mentioned in the theorem 
is, of course, the solution of the adjoint equations as derived from necessary 
conditions. 

Thus, Iet 

and Iet 

Then, 

:J{(r./J(t), x(t), u(t))- :J{(rjJ(t), x, u) + ~(t)[x(t)- x] 

= !c2u- 1[(k2t + e)u + x2]2 ~ 0 

and condition (i) of Theorem 11.1 is satisfied. Condition (ii) is trivially 
satisfied since A1(t) = 0, A2(0) = 0, and x2(1) = -w. Thus, 

G(u( ·)) ~ G(u( ·)) 

for every u( ·) E :!f with C > 0, and it fol\ows that these Same u( ·) are indeed 
EP optimal. 

The optimal nondimensional criteria values are 

gl(u(.)) = w/ e and g2(u(.)) = !w(k2 + e) 

As was to be expected, an emphasis on decreasing the mass (increasing c1 

and, hence, e) decreases g 1 and increases the value of the strain energy g2 • 

The parameter e serves to parametrize the EP set at the boundary of the 
attainable criteria set Y, shown in Fig. 11.2. Observe that the problems 
min{g 1(u( · )): g2(u( ·)) ~ g2 } and min {g2(u( · )): g1(u( · )) ~ g1} both yield 

9z 

t~w ---------------

Fig. 11.2. Attainable criteria set for the simple 
9t example. 
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EP optimal designs. Note carefully, however, that no solution exists for a 
specified goal vector g with g2 < !k2w, illustrating the importance of a proper 
choice of the goal vector. 

By way of comparison, consider now the well-accepted optimal design 
as implied by the constant-stress design. With the use of an overbar to 
designate these design variables, one has 

x2(t) -w-k2 J;u(g)dg _ 
-- = = --r = const 
ü(t) ü(t) 

resulting in a solution 

ü(t) = (w/f)exp{k2(1- t)/f} 

along with 

x2(t) = -w exp{kil- t)/f} 

and 

x1(t) = -k1ft 

It remains to justify the natural aspects of this multicriteria design 
approach. Recall that the design above is intended to provide a model for 
the final evolved state of a structure in nature. The lower flared section of 
a tree trunk is taken to be such a shape. 

Since the effort is to match nature in some sense, it is of interest to 
compare which of the two "optimal" designs above most closely resembles 
the actual outline of a tree trunk (Fig. 11.3). Forthis purpose, the cross
sectional areas are taken to be circular. In terms of two interpolation 
constants each, the radius of the natural structure and that of the constant 
stress structure are given by 

r(t) = af(b + t) and r(t) = A e8 ' 

Q 

Fig. 11.3. A tree stump. 



www.manaraa.com

362 Wolfram Stadler 

respectively. Both the hyperbola and the exponential were matched to the 
traced outline of a Sequoia gigantia for various choices of the interpolation 
interval [0, t1] measured along the height ofthe tree. The hyperbola matched 
the tree outline up to a tree height of about 10 feet; in fact, the two curves 
were indistinguishable. The exponential, when interpolated over the same 
intervals, however, deviated markedly from the tree outline. 

Obviously, such comparisons cannot be considered tobe experimental 
evidence, for any number of curves could be made to fit this outline over 
suitable intervals. What is conclusive and interesting is that the matehing 
curve stems from an optimal design based on the mathematical model of 
a physical situation and that it does provide a better fit than another 
"optimal" design. 

11.3. Natural Structural Shapes 

The meanings of the word "design" are probably as varied as those of 
the word "optimal," since any design is intended to be optimal in some 
implicit or explicit fashion. There are two distinct approaches to design: 
the ad hoc artisan approach, which takes experience, intuition, and tinkering 
to arrive at a final result, and the analytical approach, which takes 
experience, intuition, and tinkering to arrive at a final result. In the former, 
the tinkering is based on the redesign of a sequence of prototypes; in the 
latter, it consists of formulations and reformulations of the overall prob!em 
as well as its solution. In the former, it is usually difficult to convey to the 
uninitiated definite rules by which one arrives at a design; in the latter, an 
emphasis is placed on conveying and quantifying the rules. Adherents of 
the form er term their designs practical and those of the latter type impractical 
and unrealistic. Adherents of the latter tend to think of the former more as 
inventors than designers. Be that as it may, the approach here is obviously 
an analytic one, if for no other reason than that it requires only paper and 
pen as its resources. 

The diversity, of course, does not stop here. However, one may legiti
mately claim that the approaches fall between the following two extreme 
statements, the first ofwhich is due to Leonhard Euler, who writes (Ref. 9): 

... For since the fabric of the universe is most perfect and is the work of a most 
wise Creator, nothing whatsoever takes place in the universe in which some 
relation of maximum and minimum does not appear. Wherefore there is 
absolutely no doubt that every effect in the universe can be explained as satisfac
torily from final causes, by the aid of the method of maxima and minima [Euler's 
terminology for the Calculus of Variations], as it can from the effective causes 
themselves. Now there exist on every hand such notable instances of this fact, 
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that in order to prove its truth, we have no need at all of a number of examples; 

nay rather one's task should be this, namely, in any field of Natural Science 

whatsoever to study that quantity which takes on a maximum or a minimum 

value, an occupation that seems to belong to philosophy rather than to mathe

matics. 

363 

The second statement is due to more recent authors, who write (Ref. 10): 

The two most important criteria are the Ievel of pro fit and the Ievel of investment 

or their equivalent forms. Normally, technical criteria should be some reduced 

form of the economic criteria. 

Any optimal design process (and hence any design process) involves 

the following four steps: 

1. Selection of the mathematical model for the physical process. 
2. Selection of the set of fixed parameters and the set of design para-

meters. 
3. Selection of a preference on the set of design parameters. 
4. Selection of an optimum with respect to the preference. 

The problern is then ready for solving. Generally, the solution process 
will require both analytical and numerical methods to arrive at the final 
result. Ideally, this solution process should include the following steps: 

The analytical method. First, the existence of the solution should be 

investigated, although nonexistence may sometimes be of interest ( e.g., see 
Ref. 11 ). One then terms solutions based on the use of necessary conditions 
only as "extremal," and those for which sufficient conditions are also 
satisfied as "optimal." The question of uniqueness rounds oft the investi
gation. 

The numerical method. First, the existence of the solution should be 
assured. Subsequently, there are two types of convergence tobe considered: 
convergence of the algorithm itself and its convergence to the optimum. 
Convergence generally includes some kind of stopping criterion. 

In practice, however, a more pragmatic approach is the rule. Existence 
is often difficult to prove or requires assumptions which remove the problern 
from the physically meaningful. There are few sufficient conditions that are 
easily applied, and uniqueness is treated in Iine with the motto, "I have 
one solution; you find the other." Hence, analysts tend to term anything 
that satisfies necessary conditions as "optimal" and numericists happily 
accept any reasonable numerical result as "optimal." Fortunately, all of 
these philosophical differences are of Iittle interest to the user, who generally 
only wishes to obtain a better design than the one he has at present. It is 
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in this latter light that all organized approaches to optimal design should 
be viewed. 

The concept of natural structural shapes is now formulated within the 
previously mentioned framework. Overall, continuum mechanics may be 
taken to be the mathematical model. Until now, however, most of the 
problems have been formulated in terms of particular engineering theories. 
Infinite-dimensional problems were restricted to those with one independent 
variable. This was done in order to allow a uniform problern treatment 
within optimal control theory, since optimization methods for partial 
differential equations are usually tied to specific equation types. A still more 
refined formulation is obtained in terms of the previous four-point 
framework: 

1. The mathematical model for the physical phenomenon may be any 
engineering theory, such as beam theory or shell theory, the most general 
one here being the purely mechanical theory of continua. In every case, the 
theory should be weil established and based on clearly stated axioms. 

2. The first thing to do is to free oneself of preconceived notions of 
what constitutes a given variable and what constitutes a design variable. 
Traditionally, geometric variables such as length and cross-sectional area 
have served as design variables; however, the force distribution or a constitu
tive relation serve equally weil. Thus, no general specification of these sets 
is made. Whatever the sets, the axioms of a particular theory pose constraints 
that are always present. For example, every optimum in structural design 
is subject to the static equilibrium of the structure either explicitly or 
implicitly. In fact, a major effort here is directed to the discovery of the 
best possible designs within a particular axiomatic framework. 

3. A preference over the design variable set is introduced in terms of 
criteria. For the purely mechanical theory of continua and all of the special 
related engineering theories, these criteria are the mass and the stored energy 
(strain energy) ofthe loaded structure. In essence, these criteria were chosen 
to represent the overall structural behavior rather than the behavior of the 
structure at some select point, e.g., minimizing the maximum defiection or 
the maximum stress. The criteria space IR 2 is then equipped with the partial 
order ~. thus providing a comparison between criteria values, and hence 
the designs. 

4. An optimal design essentially is one for which the criteria attain an 
EP optimum in criteria space. 

Let the design space r!iJ be delineated by constraints on the design 
variables as well as the axioms and assumptions of a particular engineering 
theory, and Iet the mass and the stored energy of the structure be denoted 
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by g1( ·):~-+IR and g2 ( ·):~-+IR, respectively. Denote the criteria map 
g( ·): ~-+ IR2 by g( ·) = (g1( • ), g2( ·)) and Iet Y = g(~) be the attainable 

criteria set. 

Definition 11.1. Natural Structural Shape. A design J E ~ is a natural 
structural shape if g(d) is an EP optimum on Y with minimization as the 
central objective. Furthermore, the EP optima are taken to be proper in the 
sense that all of the relative minima of the individual criteria are omitted 
from the EP set. 

A fairly extensive discussion of the various notions of propemess among 
cone-optimal points may be found in Ref. 12. The definition above is the 
most Straightforward within the present context, since the minimum weight 
structure will often be obtained for comparison purposes. 

When the design space is finite dimensional, the resulting mathematical 
problern will generally be a nonlinear multicriteria programming problem. 
If the design space is infinite dimensional with one independent variable, 
it will be a nonlinear multicriteria control problem. Existence will be taken 
for granted, although existence theorems in Ref. 13, for example, are ample 
for present purposes. The design will be based on necessary conditions, 
followed by the application of sufficient conditions, whenever possible. The 
necessary conditions are embodied in Theorem 1.1 and Theorem 1.2 of 
Chapter 1. In control theoretic situations, the following sufficient condition 
for optimal control due to Leitmann (Ref. 14) has proven tobe quite useful 
in conjunction with the scalarization Lemma 1.6. The theorem seems to 
have two modes of use: it either yields results quickly and in a Straightfor
ward mnner, or not at all. 

Consider the same overall notation as that of the multicriteria control 
problern in Chapter 1. Leave the independent variable t explicitly in the 
problern rather than considering it as the nth state variable. Replace the 
criteria map g( · ) by the linear combination of criteria 

N 

G(u( · )) = L c;g;(u( · )) 
i=l 

with c = ( c1 , c2 , ••• , cN) > 0, and with minimization as the objective. Let 

ho(x, u, t) = ctf10(x, u, t) + · · · + cNfNo(X, u, t) 

be the linear combination of corresponding integrands and define a function 
'JC( ·):IR" x IR" x IR' x IR-+ IR by 

X(l/1, x, u, t) = -h0(x, u, t) + 1/JTJ(x, u, t) 

One then has the following sufficiency theorem. 
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Theorem 11.1. The control u( · ):[t0 , t 1] ~IR', generating the solution 
x( ·): [ t0 , tt] ~ !Rn, is EP optimal on fl" with respect to X c !Rn if there exists 
a piecewise smooth function if;( · ) : [ t0 , t 1] ~ !Rn such that 

l. J{(lj;(t), x(t), u(t), t]- JC(Ij;(t), X, U, t] + J,T(t)(x(t)- X]~ 0 

Vx E X, Vu E U, and Vt E [t0 , t1] 

n. if;T(t0)[x(to)- y]- if;T(t1)[x(t1)- z] ~ o 

V y E 0° n X and V z E 0 1 n X 

Note the ease with which the theorem yielded results in the preceding 
section. 

Two more examples of natural structural shapes will be considered in 
the following sections. The first will be a problern in beam theory represent
ing an idealized tree branch. The second example will deal with a much 
neglected theoretical aspect of optimal design-namely, the investigation 
of properties of an optimal design other than the obvious one of being 
optimal for a particular criterion or set of criteria. A classical example is 
the limited equivalence of minimum weight and fully stressed design. The 
investigation here will center on some highly desirable stability aspects 
exhibited by a natural structural shape. By way of comparison, a number 
of undesirable aspects of a related minimum weight design will be brought 
to light. 

11.4. A Tree Branch 

Consider the following problern within the usual engineering beam 
theory (Ref. 8). A tree branch is taken to be a cantilevered beam that is to 
support primarily its own weight. The natural variation in cross-sectional 
area as a function of the distance along the beam is to be determined. 

The sign convention and the following statements are based on Fig. 
11.4. The internal moment at a section x is given by 

M(x) = tL (x- g)pgA(g) dg 

where p is the mass density per unit volume, g is the gravitational constant, 
and A( ·): [0, L] ~IRis the cross-sectional area distribution. With Bernoulli
Euler theory the vertical deflection y(x) at a section x is related to the 
moment M(x) and the bending stiffness El(x) by 

d 2y M(x) dy 
dx 2 (x) == El(x)' y(O) = dx (O) = O, 

dM 
M(L) =- (L) = 0 

dx 
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M0~ ~ -·-!-·-·-·- +)M(X)-
W 
,,.__~------~--~ V(xJ 

Fig. 11.4. Cantilevered beam loaded by its 
own weight. 

; ~ -4t~ X __j 

where /(x) is the sectional area moment of inertia at x. The total mass and 
the total stored energy for the deformed beam are given by 

fL _! JL M2(g) 
.Al = 

0 
pA(g) dg and g- 2 0 

E/(g) dg 

respectively. For definiteness, the cross-sectional areas will be taken as 
circular so that J(x) = A 2(x)/47T. 

With the nondimensional variables 

X 
t =

L' 

and with 

x (t) = y(tL) 
I L , 

u(t) = A(~L) 
A 

the standard control-theoretic problern statement has the form: Obtain 
natural shapes u( ·) E [!F for the criteria 

.A{ f I g 1(u( ·)) = --- = u(g) dg 
pAL o 

and (11.4) 

subject to 

.XI= x2, x1(0)=0, x 1(1) arb. 

x2 = klx3/ U2, x2 (0) = 0, x2(1) arb. 
(11.5) 

x3 = x4, x3(0) arb., x3(1) = 0 

x4 = -k2u, x4 (0) arb., x4 (1) = 0, kl = 47TQ/ EA 



www.manaraa.com

368 Wolfram Stadler 

Note that the constraints consist of the global and local static equilibrium 
of the structure. 

As always, the solution of the problern begins with the perennial 'Je 
function 

with corresponding adjoint equations 

. a'Je 
A, = -- = 0, 

ax, 
A,(O) arb., A,(l) = 0 

a'Je 
A2(0) arb., A2(1)=0 A2 = ----A 

dX2- 1 ' 

(11.6) 

A3 = 
a'Je -2 -2 A3(0) = 0, A3(1) arb. -- = C2x3 u - k 1A2 u , 
ax3 

a'Je 
A4 (0) = 0, A4 ( 1) arb. A4 = ----A a - ), 

X4 

where the boundary values on the A, have again been obtained from an 
application of the transversality conditions. As a result, 

For the unconstrained control problern one again has 

a'Je 2 -3 - (A, X, u) = -c1 + c2x 3 u - k2A4 = 0 au 
or 

u(t) = c~13xj13/[c 1 + k2 A4 (t)] 113 

The Substitutionofthis expression for u( ·) into the state equations (11.5) 
and into the adjoint equations (11.6) results in the expressions 

.. k2c~13x~13 (t) ·· 113 [c1 + kzA4(t)f13 
x3(t) = - [c, + k2 A4(t)]' 13 and A4(t) = -c2 x~13 (t) (11.7) 

The Substitution of u(. ), along with the corresponding x(.) and A(. ), 
into the 'Je function results in 

since the "time" interval [0, 1] is specified. From the boundary conditions 
x3(1) = x4 (1) = 0 it follows that C = 0. 
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Next, the coupled differential equations (11.7) are solved. To do so, 
consider the expression 

and note that it satisfies the differential equation 

cß(t) + 5k2 c~13 c/J 213 (t) = -2k2 C = 0 

subject to c/J{l) = c/>(1) = 0. Upon integration and the use of the boundary 
conditions, one obtains 

c/J(t) = - ak2 ) 3cA1- t) 6 = x3(t)[c, + kzA4(t)] 

As a result, the state equation for x3 becomes 

(1- t)2x3(t)- 6x3(t) = o 
with general solution 

x 3(t) = d1(1- t) 3 + d 2(1- t)- 2 

The acceptance of only the bounded solution imposes d2 = 0. The further 
use of A4(0) = 0 in c/J(t) implies that 

d, = - (Akz) 3 Cz/ C1 

so that one finally has 

x3(t) = - akz)3cz(l- t)3/c, 

along with the extremal area distribution 

u(t) = akz)2cz(l- t)/ c, 

and corresponding radius 

r(t) = Ak2[c20- t)/c,17']' 12 

Remark 11.1. Note that this is the solution of a highly nonlinear 
multicriteria control problem. More precisely, it is an extremal solution, 
since only necessary conditions have been used in its deduction. Again 
8 = cd c2 may be used to parametrize the EP set, the family of natural 
structural shapes for this problem. The selection of a particular shape from 
among this family of shapes may be accomplished by specifying any addi
tional constraint such as a stress, a deftection, the weight, or the stored 
energy. 

With some imagination, this may be viewed as a tree branch, as shown 
in Fig. 11.5. 

Aside from these natural aspects, it is of interest to point out the 
advantagesoftbis design approach when compared to other optimal designs. 
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Fig. 11.5. A tree branch. 

The constant maximum stress design. Consider again a cantilevered 
beam which is to support its own weight in such a way that the maximum 
stress is constant along the length of the beam. For a circular cross section, 
the nondimensional maximum bending stress is 

f(t) = kx3(t)/r\t) = -c, 

with A = L 2 • The resulting nonlinear differential equation for the determina
tion of i'( · ) is 

Fora bounded stress, the trivial solution i'(t) = 0 is not an acceptable one. 
Integration, and the imposition of a bounded solution at t = 1 and the 
boundary condition x3 ( I) = 0, yields the radius distribution 

r(t) = Trkk2(t- 1?/30c 

Note that virtually all assumptions ofbeam theory and elasticity are violated 
at t = I. 

The unconstrained mzmmum mass problem. When no constraint is 
imposed, the minimum mass optimal control problern yields a beam with 
zero cross section-again, an unacceptable result. 

The three different optimal designs thus have radius distributions of 
the form 

( ) 
1/2 

r(x) = A I - i , r(x) = 0 

These results are depicted in Fig. 11.6. Thus, the inclusion of the strain 
energy as one of the criteria overcomes the trivial and unacceptable result 
of the minimum mass problem, and it produces a finite deftection all along 
the beam, avoiding theinfinite deftection occurring at x = L for the constant 
stress design. 
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Fig. 11.6. A comparison of optimal designs. --,Natural shape;--- -, constant maximum 
stress design. 

11.5. Stability Implications 

If optimal design methods are to become generally accepted in industry, 
it is necessary that they not be limited to optimality as implied by the 
criteria. lt should also be known what other desirable or undesirable aspects 
these designs exhibit from an engineering (rather than an economic) point 
of view. A classical example of such an investigation is the limited 
equivalence of fully stressed design and minimum weight design. In the 
following, some extremely undesirable stability aspects of minimum weight 
design will be discussed, as weil as the manner in which most of these may 
be alleviated by the inclusion of the strain energy as an additional criterion. 
Indeed, the implications for natural structural shapes are deeper in the 
sense that these, in fact, exhibit extremely desirable stability aspects. 

Clearly, stability considerations are an essential aspect of optimal 
structural design. A structure certainly cannot realistically be considered 
optimal if it collapses prior to reaching its design Ioad or if it is on the 
verge of collapse at the design Ioad. There appear to be four ways in which 
stability aspects enter problems in optimal structural design: 

1. Extreme sensitivity of the optimal design to imperfections. That is, 
slight deviations from the optimal design can cause large changes 
in the critical Ioad. 

2. Optimization is carried out at a critical equilibrium. Generally, either 
the critical Ioad is maximized subject to constant mass, or the mass 
is minimized subject to a given critical Ioad. 

3. Stability constraints are imposed, and checked, at each step of an 
iterative optimal design process. 

4. Stability or instability conditions turn outtobe the same as optimality 
conditions. 



www.manaraa.com

372 Wolfram Stadler 

The first of these does not really deal with the optimal design process. 
Generally, the bifurcation behavior of a given structure is investigated. The 
structure may or may not be an optimal design with respect to some criterion. 
An imperfection parameter is introduced, and the criticalload is then plotted 
versus the imperfection parameter. It turns out that some optimal shapes 
exhibit a drastic decrease of the critical Ioad even for small imperfections. 
This is certainly an undesirable attribute of an optimal design. However, 
stability can be made to enter the design process only somewhat artificially 
by taking the imperfection parameteras the design variable, with the intent 
of maximizing the critical Ioad for a given mass. 

For the second possibility above, stability considerations enter the 
design process only insofar as the design is carried out at a critical equili
brium state of the structure. Since one is already at a critical, generally 
unstable equilibrium point of the structure, this approach can provide little 
information about the possible ways in which stability implications can 
arise in the design process. 

The third situation is the most obvious and direct approach to the 
treatment of questions of stability. Independent of the choice of criteria or 
optimality concept, one simply imposes constraints that assure that any 
possible instabilities of the structure are avoided. Since this must be done 
at every step of an iterative design process for all structural components 
that have possible instabilities, it can add considerably to computational 
costs. Furthermore, the method is lacking when not all of the possible 
instabilities are known a priori. 

The fourth method is the only one that truly couples the optimization 
and stabilization process, in that some of the optimality conditions are 
identical with certain stability conditions. The idea is central to the following 
discussion. 

The examples are based on several papers in the optimal design of 
shallow arches by the author ( Refs. 15-19). In a sense, these papers were 
written in the wrong order. A number of conceptual difficulties could have 
been avoided if the simple arch problern had been worked first (Ref. 19). 
The first formulation of the shallow arch problern (Ref. 15) turned out to 
be awkward and Jess general than indicated in the paper. A much more 
direct and clearer formulation is given in Refs. 17 and 18, where all of the 
stability conditions and corresponding optimality conditions enter the prob
lern in terms of a parameter, in essence the axialload on the beam column. 
This Jatter formulation will be used here. But first, the simple arch. 

Example 11.1. The simple arch. This example was first treated in 
Ref. 19. It illustrates nearly all ofthe detrimental aspects ofminimum weight 
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Fig. 11.7. The simple arch. 

design as weil as the manner in which they may be remedied by the inclusion 
of the strain energy of the loaded structure as an additional criterion. 

The initial shape ( dashed line) and the deftected shape (solid line) of 
the arch are illustrated in Fig. 11.7. The arch is assumed to be composed 
of two linear springs with stiffness k that are pinned to each other and the 
rigid supports as shown. The springs are assumed to resist both tension and 
compression. The distance between the supports is taken tobe L. The initial 
angle of the springs is a and the central pin is loaded by a dead vertical 
force of magnitude P. Only the symmetric deformation of the arch is 
considered; thus, the final deftected shape of the arch may be characterized 
by the single angle ß. The mass per unit length of the arch is p; the weight, 
however, is not considered to be part of the Ioad. It will also be assumed 
that the arch is shallow. This assumption does not diminish the conceptual 
results, and it simplifies the algebra. The interval ( -'TT'/2, 'TT'/2) is kept as 
the ambient interval for a and ß for convenience. 

The mass of the arch is given by 

ß(a) = pLseca 3: L(l +~a 2) 

and the strain energy of the loaded arch is 

~(a) = ~kL2(sec a- sec ß)2 3: -hkL2(a 2 - ß2? 
The overall static equilibrium of the arch requires 

P = kL sin ß(sec a- sec ß) 3: ~kLß(a 2 - ß 2) (11.8) 

It is instructive to introduce the problems to be treated within the 
previous four-point framework: 

1. The mathematical model consists of two simple rods ( column buck
ling is not included as a possibility) in axial compression, in essence, linear 
springs. The arch formed by the hinged rods is considered to be shallow. 

2. The set offixed parameter is {p, k, L, P}; the set of design parameters 
consists of the singleton { a}. The state variable plays an intermediate role, 
as do all state variables in optimal structural design problems. Since a and 
ß are coupled by the static equilibrium condition, each choice of design a 
results in a specific equilibrium state ß. Thus, an optimal design a has 
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associated with it a corresponding optimal equilibrium ß, calculated from 
the equilibrium condition. It is the stability of these "optimal" equilibria 
that is of interest here. 

3. Three preferences will be considered, based on the two criteria 
above. Two of the preferences are simply the usual total ordering of the 
reals; the third is the natural order on IR 2 • 

4. The optimality concept will be minimization for the first two and 
the deduction of minimal elements for the third. 

Thus, there are three problems to consider: 

A. Minimize .4L(a) subject to a E (-TT/2, TT/2). 
B. Minimize ~(a) subject to a E (-TT/2, TT/2). 
C. Obtain proper EP optima for the criteria mass and strain energy, 

subject to a E ( -TT/2, TT/2). 

Equilibrium is a constraint in all three problems. 
These problems are now worked in succession. The difficulties encoun

tered with the first two problems will make the advantages of the third 
approach apparent. 

A. The Minimum Mass Problem. If no further restrictions are 
imposed, the optimal design is obviously given by a* = 0 with minimum 
mass .4L(a*) = pL. The corresponding optimal equilibrium is obtained from 
equation (11.8) as ß* = - (2P/kL) 113 • The equilibrium is unique and it is 
clearly stable. 

Suppose now that one were to impose the further restriction a > 0. In 
that case, the problern has no solution if one allows ß < 0 as a possible 
equilibrium state, since one may then choose a arbitrarily close to zero, 
resulting in .4l ( a) arbitrarily close to pL with pL not a possibility. The 
situation is illustrated with a graph of a versus ß based on equation (11.8) 
and shown in Fig. 11.8. 

Usually the intended use of an arch is one for which the arch does not 
sag upon loading; that is, one imposes both a ~ 0 and ß ~ 0 as design 
constraints. The possible combinations of a and ß are now restricted to 

- ( .&E.)~ 
kL 

" 

Fig. 11.8. Deflection as a function 
of the initial shape. 
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the non-negative quadrant in Fig. 11.8. Since .M( ·) is monotonic in a, the 
smallest possible initial angle now is the optimal one. The extremal choice 
is obtained from 

da 3ß 2 - a 2 
-= =0 
dß 2aß 

as a = .J3ß. Substitution into Eq. (11.8) results in 

( p)l/3 ( p)l/3 
a* = .J3 kL and ß* = kL 

as the corresponding extremal equilibrium. In fact, these are the optimal 
values, since the sufficient condition 

d 2 a (kL) 1
/

3 

dßz (a*) = .J3 P > 0 

is also satisfied. The minimum mass is given by 

[ 3(p)2
/

3
] .M(a*) = pL 1 + l kL 

It remains to investigate the stability of the optimal equilibrium state. 
The usual critical loading condition, 

dP I 2 2 
dß (ß) = 2kL(a - 3ß ) = 0 

implies that ß* is the corresponding critical equilibrium position. The total 
potential energy for this problern is 

'V(ß) = -&,kL2(a 2 - ß 2 )- !PL(a - ß) 

and 

d2'V 
dß 2 (ß*) = ikL2(3ß*2 - a*2 ) = 0 

implies that the equilibrium is unstable. 

Remark 11.2. Note that one here has an optimal structural design 
which, when loaded to the design Ioad, has a catastrophic failure. Further
more, although all of the mathematical constraints for the problern are 
satisfied (that is, a ~ 0 and ß ~ 0) the physics of the situation result in a 
violation of these constraints. Upon loading to the design Ioad P, the 
structure snaps through and eventually ends up at a stable equilibrium 
IJ < 0, an equilibrium that is nonoptimal and violates the constraint ß ~ 0. 
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B. The Minimum Stored Energy Problem. This problern serves as an 
excellent example for a standard approach to nonexistence proofs in 
optimization. 

The Substitution of equation (11.8) into the expression for the strain 
energy yields ~(a) = P2l4kß 2 • As a consequence of ß E (-TTI2, TTI2) one 
has ~ = P 2 I k1r 2 as the greatest lower bound, which is, however, not attain
able. It follows that the minimum ~*, if it exists, must satisfy ~* > P2 I k1r 2• 

Let ~ be such that P 2l k1r 2 < ~ < ~* and take ß = Pl2(k~) 112 and 
ä = (/32 + 2P I kL/3) 112 • Thus, there exists an ä, satisfying all constraints, 
such that ~( ä) < ~* -a contradiction. Furthermore, this result is not 
affected by including the additional constraints a ~ 0 and ß ~ 0. Clearly, 
a minimum does exist ifthe state constraint is modified to -TTI2 < ß ~ ß1 < 
7TI2. 

C. The Natural Shapes of the Simple Arch. The following necessary 
condition is extremely useful for bicriterion problems. The proof of the 
theorem may be found in Ref. 18. 

Theorem 11.2. Assurne that the attainable set is closed and Iet y be 
a segment of the boundary of the attainable set consisting only of Pareta 
optimal points. Assurne that y may be represented by the function 
g2 ( ·): [ a, b] ~ IR, with g2 ( ·) differentiable on ( a, b) [possessing a finite 
derivative everywhere on ( a, b)]. Then 

for every g1 E (a, b). 

Recall that the set of natural shapes consisted of the EP set for the 
criteria mass and strain energy with the proper minima removed. This latter 
restriction may be incorporated into the necessary conditions above by 
requiring that the strict inequality be satisfied. 

With the previous additional constraints 0 ~ a < TTI2 and 0 ~ ß < 
7T I 2, the necessary condition takes on the form 

d"U 4p(a 2 - 3ß 2 ) 
-= o oo<O 
d~ kL(a-- Wt 

(11.9) 

The condition a 2 - 3ß 2 < 0 tagether with the equilibrium equation (11.8) 
result in the requirements 

( p)l/J 
a > .J3 kL and 

A ( p)l/3 ß> -
kL 
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to be satisfied by the natural shapes ( the EP optimal arch rises a and the 
corresponding EP optimal equilibria {3). 

The term optimal rather than extremal is justified in view of the 
following sufficiency argument. 

The linear combination of the criteria 

G(a) = .M(a) + rlß'(a), r > 0 

has the second derivative 

which is greater than zero for all choices of a suchthat 3ß 2 > a 2• It follows 
that the family of designs specified by J3(P/ kL) 113 < a < 7r/2 is EP 
optimal. 

Remark 11.3. It is worth noting the advantages or the multicriteria 
approach. The use of the natural structural shapes concept eliminated the 
minimum mass solution with its undesirable stability aspects, as well as the 
existence questions encountered with the minimum strain energy problem. 
Aside from eliminating these negative aspects, the following far-reaching 
stability implications for natural shapes became apparent. They concern 
the equivalence of stability and optimality conditions. The necessary opti
mality condition (11.9) above Ieads to the same requirements for a and ß 
as does the sufficient stability condition 

assuring a minimum of the potential energy. Thus, a necessary condition for 
optimality is sufficient for stability. This is an ideal situation. Unfortunately, 
there are limitations to this result, which become apparent in the following 
shallow arches problern incorporating bifurcation phenomena. 

Example 11.2. The uniform shallow arch. The main effort here is 
directed towards the optimal design of uniform shallow arches-that is, the 
determination of an optimal initial curvature and final axial Ioad for a given 
transverse loading and boundary conditions. Naturally, all of the results 
are subject to this shallowness assumption and all of the results, in the end, 
must be interpreted in that light. No conditions will be given here as to 
what height-to-span ratio constitutes a "shallow" arch. An extensive dis
cussion of related and preceding Iiterature may be found in Ref. 17. 
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All of the discussion of the axial and transverse equilibrium of shallow 
arches is based on the following displacement functions: 

y0 ( • ): [0, L] ~IR is the initial position ofthe arch; 
y 1( • ): [0, L] ~IR is the vertical displacement ofthe arch; 
y( · ): [0, L] ~IR is the displaced position ofthe arch after load

ing has been applied; 
z( · ): [0, L] ~IR is the axial displacement of points on the arch 

after loading. 
The axial equilibrium condition is derived first. The derivation is based 

on Fig. 11.9. The expression for the axial strain in the beam, 

( ) _ ds*(x)- ds(x) 
e x - ds(x) 

is based on the geometry shown in Fig. 11.9. The expression for the arc 
length in the deformed state is 

ds*2 = [Yox + y,xf dx2 + [1 + zxf dx2 

and the arc length in the undeformed shape is given by 

ds2 = (1 + Y~x) dx2 

where a subscript x has been used to denote the partial derivative with 
respect to x and where the argument x was omitted for convenience. 

z(x) 

(x~dx~z(x)+d'Zdx u (x)+~dx+u,(x}~~d dx) QX >~o QX ~ X 

(X ~dx, y0(x)+ ~dll) 

z(x) + d~ dx 
dx 

Fig. 11.9. Geometry for the axial strain. 
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The axial strain at x then is given by 

For 

{ (Yox + Y~x) 2 + (1 + zx?} 112 

e = 2 - 1 
1 + Yox 

{1 + Yix + z~ + 2YoxYlx + 2Z..,} 112 

= 2 - 1 
1 + Yox 

1 1 2 2 = 1 + ---2- [Ylx + Zx + 2YoxYtx + 2zx] 
2 1 + Yox 

1 1 2 

- S (1 + y~J2 [· • • + 4zx] + · · ·- 1 

[1 + Y~xr 1 = 1 - Y~x + Yrix- · · · 
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only the "1" is kept, in consonance with the ultimate intent of keeping only 
first order terms in z and second order terms in y in the expression for the 
strain e. With this in mind one eventually obtains 

e = 1 + !Yix + !z~ + YoxYlx + Zx - !z~ · · · - 1 

= Zx + YoxYlx + !Yix· 

lt is now assumed that the cross sections are uniform with area A and 
that the material is linearly elastic with modulus E. A further assumption 
is that the axial force in the beam is a constant H along the arch. With 
H ~ 0 and with tension taken as positive, one has 

1 H 
e(x) =- O"(x) = --

E AE 

for the arch. Thus, the pointwise axial equilibrium condition in its deflection 
form may be written as 

dz (x) = _ H _ dy0 (x) dy 1 (x) _.!. [dy 1 (x)]2 

dx AE dx dx 2 dx 
(11.10) 

The transverse equilibrium equation is based on the usual linearized 
form of the Bernoulli-Euler moment-curvature relationship 

d 2y 1 (x) = _ M(x) 
dx 2 EI 

where I is the constant area moment of inertia of the cross section. The 
sign convention implies that a positive moment produces a decrease in 
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H 
Fig. 11.10. Terminology for transverse equili-

R brium. 

curvature, as illustrated in Fig. 11.10. It is convenient to use 

M(x) = -Hy(x)- M(x) 

where Hy(x) is the moment due to the axial Ioad H and M(x) is the 
moment distribution due to the known transverse loading w(x ), including 
the contribution of the reactions R and M 0 at the boundary. These last two 
equations tagether with y(x) = y0(x) + y1(x) then yield the result 

d 2y H d 2y0 - 1 
dx 2 (x) + Ely(x) = dx 2 (x)- M(x) EI (11.11) 

Within this approximate theory, the total mass and the strain energy 
of the arch are given by 

and 

't=~EI -(x)-~(x) dx+---fL [d2y d2 ]2 1 H2L 
0 dx 2 dx 2 2 EA 

respectively, where p is the constant mass density per unit length of the 
arch and L is the total width of the span. 

In order to readily apply control theoretic results, it is convenient to 
formulate the problern statement in nondimensional form. Let 

X 
t =

L' 
x (t) = y(tL) 

I L ' 

m(t) = M~tL) 
QL , 

x (t) = Yo(tL) 
2 L ' 

ew(tL) 
q(t) = 2EI 

x (t) = z(tL) 
s L 

along with x1 = x3 , x2 = x4 , x4 = u, where Q is some characteristic force 
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and w( · ) is the transverse loading. The nondimensional mass 

and strain energy 

2Al fl 
gt(u( · ), ß) =-- 2 = x~(g) dg 

pL o 

e= L2A 
2I' 
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then result in the following nonlinear multicriteria control problem: Obtain 
proper EP optimal solutions for the criteria g1(u( · ), ß) and g2(u( · ), ß) 
subject to the equilibrium conditions 

X 1(0) = X 1(1) = 0 

x2(0) = x2(1) = 0 

x3(0) and x3(1) arb. 

x(O) and x(l) arb. 

x(O) = x(l) = 0 

This collection of boundary conditions corresponds to the hinged-hinged 
arch with a fixed span. They were chosen because of the expected stability 
implications. Other combinations of boundary conditions may be treated 
in a similar manner by making suitable adjustments in the transversality 
conditions. Necessary and sufficient conditions for optimal control are 
derived next. 

Necessary Conditions. Recall that the design variables here are the 
initial curvature of the arch, u( · ), and the axialload ß for the loaded arch. 
The control constraint set is taken to be 

fJi = {(u( · ), ß): u( ·): [0, 1] ~IR is piecewise continuous, 

lul < oo, lßl < oo}, 

corresponding to the so-called unconstrained problern of control theory. 
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The Hamiltonian for the problern is given by 

~( ) [ 2 2 2 2 1 7T4ß 2] dL x,A,ß,u =Ao c1x4+c2(ß7Tx1 +ym) +c227 +A 1x3 +A2x4 

+ A3(u- ß7T2X1 -lm) + A4u 

[ 1 ß7T2 
1 2 2 J + A ---+ ~(x -X) 5 2 k2 2 4 3 

where ( c1 , c2 ) > 0 is imposed in accordance with the definition of natural 
structural shapes and where A0 ~ 0, as always. The differential equations 
forthe adjoint functions A;( ·) are specified by A, = - (allejax;), resulting in 

Ä1 = -2AoC27T2ß( 7T2ßXI + y2m) + 7T2ßAJ 

A2 = 0 

A3 = -A 1 + A5x3 

A4 = -2A0c1x4- A2 - A5x4 

Äs = 0 

(11.12) 

The transversality conditions imply A3(0) = A3(1) = A4(0) = Ail) = 0, the 
remaining boundary values being arbitrary. With u( ·) unconstrained, one 
has 

(9t 
(11.13) 

as a necessary condition for a supremum of lle( ·) with respect to u. When 
combined with the adjoint equations (11.12), condition (11.13) may also 
be written in the form 

This condition now is used to derive an optimality condition for the initial 
curvature u( · ). A differentiation of the relation with respect to t yields 

Ä1 = As(i3 - .X4) - 2A0c1.X4 

= -2AoC27T2ß[ 7T2ßxi + lm] + 7T2ßAJ 

or 

(11.14) 
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Four more differentiations and a similar use of the state and adjoint 

equations yield 

2A 0 c1 ·Ü· + 27T2ß[A 5 + 2A0 c1 - A0 C2 7T2ß]ü 

+ 7T4ß 2[A 5 + 2A0 c1]u = [2Aoc27T2ß- Asll"m (11.15) 

as the differential equation that must be satisfied by the optimal initial 

curvature u( · ). Subject to the assumption y 2 m(O) = y 2 m(l) = y 2 n1(0) = 
y 2 m(l) = 0, the boundary conditions on u( ·) may be deduced as 

u(O) = u(l) = ü(O) = ü(l) = 0 at judicious steps of the derivation of 

Eq. (11.15); for example, Eq. (11.14), evaluated at t = 0 and t = 1, yields 

u(O) = u(l) = 0. The condition J~ (a'Jejaß)dt = 0, for the optimal selection 

of the parameter ß, ultimately may be written in the form 

Recall that A0 ~ 0 is stipulated in the maximum principle and that both 

the abnormal problern with A0 = 0 and the normal problern with A0 = -1 

must usually be considered in deducing possible extremals. 

Sufficient Conditions. Sufficient conditions are again based on 

Theorem 11.1 tagether with Lemma 1.6 of Chapter 1. The use of the theorem 

Ieads to the condition 

D(x4 - x 4) 2 + 27T2 rß 2(x1 - x 1) 2 + (1- D)(x3 - x3)2 ~ 0 (11.16) 

where r = (c2 7T 2)/(2c1), D = 1- A5/2c1 , and X;= X;(t), i = 1,3,4, are the 

values of thesevariables corresponding to the pair (u( · ), ß). The conditions 

at the boundary are trivially satisfied. Since r > 0 is assumed, the condition 

certainly holds for 0 ~ D ~ 1. It follows that any pair (u( · ), ß) with r > 0 

and 0 ~ D ~ 1 is an EP optimal control. Obviously, there may be EP optimal 

controls for which these conditions are not satisfied. 

In essence, Eq. (11.15) and condition (11.16) provide for an optimal 

selection of u( ·) as a function oft; for example, u(t) = A 0(ß) sin 1rt rather 

than u(t) = A 0(ß)t(l- t). The use ofthese conditions reduces the control 

problern to a programming problern for an optimal selection ofthe parameter 

ß. The remaining part of the problern thus consists of selecting an EP 

optimal ß for g1(u( · ), ß) and g2(u( · ), ß) subject to 0 ~ D ~ 1, r > 0, 

\ß\ < oo, and, of course, any constraints imposed on ß due to equilibrium 

and boundary conditions. 

The Sinusoidally Loaded Arch. A sinusoidal loading was chosen in 

the hope of obtaining analytical results concerning stability implications of 



www.manaraa.com

384 Wolfram Stadler 

the design. From the point of view of Eq. (11.15) it is no more difficult to 
consider other possibilities; however, the axial constraint x5 ( 1) = 0, involv
ing the design parameter ß, then becomes intractible from an analytical 
point of view. The generation of numerical results for other types of loading 
would seem to be of interest. 

Details of the following discussion may be found in Ref. 18. Only the 
essentials are presented here. The sinusoidal loading has the form 

w(x) = -q0 sin(1Tx/L) 

resulting in the moment distribution 

·/m(t) = -a sin 1rt, 

The treatment of the abnormal problern is omitted since it can be shown 
in a fairly routine manner that these extremals are included among those 
of the normal problern with A0 = -1. 

With A0 = -1, the extremality condition (11.15) for the initial curvature 
has the form 

·ü· + 27T2 ß(D- rß)ü + 7T4 ß 2 Du = - (1 - D + 2rß)a1T4 sin 1Tl (11.17) 

which is to be solved subject to the boundary conditions u(O) = u(1) = 

ü(O) = ü(l) = 0. The corresponding extremality condition for the design 
parameter ß is given by 

1 
= - 2e (I - D + 2rß) (11.18) 

Equations (11.17) and (11.18) must now be solved simultaneously. The 
consideration of all possible solutions of the differential equation yields a 
sinusoidal arch of the form 

with a corresponding deftection of the form 
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To complete the process, one is now left with the following nonlinear 
programming prob lern: Obtain proper EP optimal choices ß E ( -oo, oo) for 

subject to 

B,(ß)(ß -1) = R- p,(ß) and ß = pi(ß)- Bi(ß) (11.19) 

and ß E ( -oo, oo). 
This problern with lß I < oo, and I u I < oo (i.e., I Pd < oo) is the completely 

unconstrained problem. In that case, the sagging arches with p1 < 0 are the 
only candidates for EP optimality. The corresponding curvatures are of the 

form 

(p > 0) 

For every choice of p > 0, the corresponding axial Ioad is then obtained 

from the solution of 

ß3- (1 + p2)ß2 + 2p2ß + R2 + 2Rp = 0 

Once ß has been calculated, the corresponding EP optimal equilibrium is 
given by 

B- R+p 
I- ß -1 

Since all of the arches are sagging initially, it follows that ß < 0; that is, 

the axial Ioad is tensile. Thus, all of the optimal equilibria are clearly stable. 

As was the case for the simple arch, the stability implications become 

considerably more interesting when the additional constraint u < 0 (p1 > 0) 

is introduced. The necessary condition (11.18) for the optimal selection of 
the parameter ß may be written in the form 

c2 1r2 3(B1 - B7')(B1 - B~') 
r=--= >0 

2c1 2(B1 - p1 ) 2 (B1 - B+)(B1 - B-) 

where 

and where 
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are the critical equilibria and corresponding critical Ioads for symmetric 
snap-through. The critical equilibria and Ioads for asymmetric snap-through 
are given by 

B~ 11 = (pi- 4) 112 and R±II = P1 ± 3(pi- 4) 112 

The transition from symmetric to asymmetric buckling occurs for Ptcr = 
(11/2) 112 and 

Rl =Rn= Rcr = (lf)I/2 + 3G)I/2 

Sufficient conditions are used to show that one must have B 1 > B: for 
p1 > 0, r > 0, eliminating the possibility B1 < B~ 1 • Thus, the condition r > 0 
leaves one with the requirement (B 1 - B+)(B1 - B-) > 0 as the final con
straint to be satisfied by the equilibrium parameter B 1 • 

The results of the analysis depend on the rang es of the Ioad parameter 
R, and they are most easily summarized in terms of the optimal equilibrium 
parameter values B 1 • The possible ranges are illustrated in terms of the 
traditionalload-deflection curve and the corresponding boundary points of 
the attainable criteria set (Fig. 11.11). All of the sketchesarequalitative 
rather than quantitative. 

0;::;:; R < 1. For p1 < 1, the optimal equilibrium satisfies B1 > B+. Let 
p1 be the solution of 

B+pi +Pt- (B+ 3 + B+ + R) = 0 

obtained by combining conditions (11.19). Then it follows that p1 > p1 must 
be the case. For p1 ~ 1, the natural equilibria satisfy B1 > B:, meaning that 
the largest root of the Ioad deflection curve 

R = - B~ + (pi- l)Bl +PI 

is to be chosen. The loading sequence and the natural equilibria are stable. 
Note that the attainable set (as determined by numerical means) here is 
nonconvex (Fig. 11.11a). 

1 ;::;:; R;::;:; Rcr· For R ~ 1, Jet p1 be the solution of 

R =PI+ [n(pi- 0 3 ] 112 

Then the natural arches satisfy p1 > p1 and for such a p1 the corresponding 
natural equilibria satisfy B1 > B1. That is, for any p1 one has three equilibria 
B 3 > B 2 > B 1 and B1 = B 3 • Upon loading to the design Ioad, the arch passes 
through a sequence of stable equilibria; all of the natural equilibria are 
stable ( Fig. 11.11 b ). 
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Fig. 11.11. Qualitative repre-
sentation of the 
natural equilibria for 
the sinusoidally 
loaded arch, (a) for 
the design Ioad range 
0 ~ R < 1; (b) for the 
design Ioad range 1 ~ 
R ~ Re,; (c) for the 
design Ioad range 
Rcr < R. 
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R 

R 

R 

R.,. < R. Let R be given and Iet B! and B!1 be the corresponding 
critical equilibria; that is, 

B! = Wfti- or12 

where p1 is the solution of R = p1 + [:t,-(pi- 1)3] 112 and 

B!I = (fti- 4)1/2 

where p1 is the solution of R = p1 + 3(pi- 4) 112. For p1 such that the 
corresponding B1 satisfies B\ < B1 ~ B\\ the loading sequence consists of 
stable equilibria until B\1 is reached; then the arch snaps through in the 
asymmetric mode and eventually settles at B1 , which is stable but not 
optimal. For p1 such that B1 > B!1, the loading sequence and the natural 
equilibria are stable (Fig. 1l.llc). 

Summary of Stability Results. The discussion of Example 11.2 is now 
completed in the same vein as that of the simple arch. The minimum mass 
arch, including the special case involving a sinusoidal Ioad, is worked in 
Ref. 17. The stability implications for the minimum mass arch may also be 
summarized in terms of the Ioad parameter R: 
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0 ~ R ~ 4. The optimal arch elevation is pf = R/2. The correspond
ing optimal equilibrium is Bf = - R/2 with optimal axial Ioad ß* = 0. For 
the range (O ~ R ~ 2) the loading sequence to the design Ioad R passes 
through a series of stable equilibria; the optimal equilibrium is stable. For 
the range ( 2 < R < 4) the loading sequence to the design Ioad passes through 
a series of stable equilibria until B~ is reached; it then snaps through. The 
optimal equilibrium is stable. For R = 4 there are two optimal equilibria 
corresponding to ß* = 3 and ß* = 0, the former unstable, and the latter 
stable. Obviously, the arch snaps through to the stable equilibrium. 

R > 4. Here, the optimal arch elevation pf satisfies R = 
p1 + [21,(pi- 1)3] 112• The corresponding optimal equilibrium and axialload 
are given by 

Bf = B~ = (:Hpi- Or12 and ß* = ß1 = ~(1 + 2pf2 ) 

respectively. For the range ( 4 < R < Rcr) loading to the design Ioad proceeds 
through stable equilibria to the unstable optimal equilibrium Bf = B1• The 
arch then snaps through symmetrically to the stable nonoptimal equilibrium 
B1 , an equilibrium whose feasibility is excluded by the constraint ß ~ 0. 
For the range (Rcr < R) the arch fails asymmetrically. The optimal equili
brium still is Bf; however, upon loading, the arch passes through stable 
equilibria until it reaches n:\ snaps through asyinmetrically, and is then 
loaded up to B1 , which is stable, nonoptimal, and excluded by ß ~ 0. 

Thus, depending on the magnitude ofthe Ioad parameter R, the optimal 
equilibrium may be stable or unstable, it may be nonunique, it may be 
reached after snap-through-a catastrophic failure of the structure-or it 
may not be attainable at all by the usualloading process because of a prior 
snap-through in the asymmetric mode. 

lt is finally noted that the minimum strain energy problern again has 
no solution. 

As was the case for the simple arch, nearly all of the detrimental design 
aspects of the minimum mass design were alleviated by including the strain 
energy as an additional criterion. For R < Rcr the natural shapes and 
corresponding natural equilibria are superstable in the following sense: (a) 
The designs consist of sagging arches with tensile axial Ioad so that 
instabilities are not a possibility; (b) the natural equilibria are stable equili
bria which are located prior to any catastrophic failure of the arch. Further
more, necessary conditions for optimality are again sufficient for stability; 
the condition r > 0 is the same as dg2/ dg 1 < 0, required for proper EP 
optimality, and both are the same as the second derivative condition for 
the potential energy, assuring stability. Unfortunately, here these equivalen
ces break down for R ~ Re., when asymmetric buckling becomes the failure 
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mode. In that case, the design Ioad and corresponding natural equilibrium 
are reached only after an asymmetric snap-through failure of the structure. 
In some sense, the optimal design process seems to be oblivious to the 
presence of the asymmetric failure mode, a difficulty that has not been 
resolved to date. 

11.6. Conclusion 

lt is evident that certain designs in nature have been the same for 
millenia. Such a survival rate would seem to indicate that these designs 
must be optimal in some sense. They could have evolved to such an optimal 
state or they could have been in that state from the start. If the meaning 
of "optimal" in this context could be discovered, then one could either 
copy such optimal designs, develop other designs that are optimal in the 
same fashion, or predict the Iimit to which a given design would evolve. 

If evolutionary optimization as conjectured in the initial hypothesis 
does indeed occur, then there would seem to be certain associated rules 
and consequences. 

The optimality concept would have to be universal. lt would have to 
be operating in every process, e.g., in chemical reactions as well as in fatigue 
phenomena of materials. Such all-pervading concepts are mass, entropy, 
and energy, and they thus become prime candidates for the formulation of 
the optimality concept. 

In every natural process, there are many purposes that must be taken 
into simultaneaus yet optimal consideration. Hence, the use of the mass 
and strain energy in structural design. 

The optimality concept would have to allow for infinite variety in the 
sense that every snow flake and every sea shell are optimal with respect to 
some unifying concept. The EP optimality concept provides such a natural 
trade-off between criteria and allows an infinity of optima. 

Finally, the evolved designs would have to exhibit some kind of super
stability in that small disturbances or deviations in the surroundings would 
keep the optimal outcome intact. 

In the preceding presentation, a partial justification of the natural 
aspects of this approach was given and some of the inherent structural 
stability of the designs was exhibited. In Ref. 8 the approach was used to 
devise an optimal constitutive law; conversely, if the material had evolved 
to its final state, then it would have to be optimal in the present sense. 
Hence, the optimality concept could be used to identify the material. The 
possibilities clearly are many and far-reaching; the present attempts rep
resent only a fragment thereof. 
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